Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, at the end of 2019, and there are currently no specific antiviral treatments or vaccines available. SARS-CoV-2 has been shown to use the same cell entry receptor as SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In this report, we generate a recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. A fusion protein containing an ACE2 mutant with low catalytic activity is also used in this study. The fusion proteins are then characterized. Both fusion proteins have a high binding affinity for the receptor-binding domains of SARS-CoV and SARS-CoV-2 and exhibit desirable pharmacological properties in mice. Moreover, the fusion proteins neutralize virus pseudotyped with SARS-CoV or SARS-CoV-2 spike proteins in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they have potential applications in the diagnosis, prophylaxis, and treatment of SARS-CoV-2.
Genetically engineered T cells expressing a chimeric antigen receptor (CAR) are rapidly emerging a promising new treatment for haematological and non-haematological malignancies. CAR-T therapy can induce rapid and durable clinical responses but is associated with unique acute toxicities. Moreover, CAR-T cells are vulnerable to immunosuppressive mechanisms. Here, we report that CAR-T cells release extracellular vesicles, mostly in the form of exosomes that carry CAR on their surface. The CAR-containing exosomes express a high level of cytotoxic molecules and inhibit tumour growth. Compared with CAR-T cells, CAR exosomes do not express Programmed cell Death protein 1 (PD1), and their antitumour effect cannot be weakened by recombinant PD-L1 treatment. In a preclinical in vivo model of cytokine release syndrome, the administration of CAR exosomes is relatively safe compared with CAR-T therapy. This study supports the use of exosomes as biomimetic nanovesicles that may be useful in future therapeutic approaches against tumours.
Background:The epitope and the TNF␣ inhabitation mechanism of Adalimumab remain unclear. Results: The crystal structure of the TNF␣ in complex with Adalimumab is reported at a resolution of 3.1 Å. Conclusion:The epitope of Adalimumab provided information that Adalimumab may have clinical advantage compared with Infliximab. Significance: These data reveal the Adalimumab's mechanism of TNF␣ inhibition and its advantages compared with other TNF inhibitors in clinical practice. TNF␣-targeting therapy with the use of the drugs Etanercept, Infliximab, and Adalimumab is used in the clinical treatment of various inflammatory and immune diseases. Although all of these reagents function to disrupt the interaction between TNF␣ and its receptors, clinical investigations showed the advantages of Adalimumab treatment compared withEtanercept and Infliximab. However, the underlying molecular mechanism of action of Adalimumab remains unclear. In our previous work, we presented structural data on how Infliximab binds with the E-F loop of TNF␣ and functions as a TNF␣ receptorbinding blocker. To further elucidate the variations between TNF␣ inhibitors, we solved the crystal structure of TNF␣ in complex with Adalimumab Fab. The structural observation and the mutagenesis analysis provided direct evidence for identifying the Adalimumab epitope on TNF␣ and revealed the mechanism of Adalimumab inhibition of TNF␣ by occupying the TNF␣ receptor-binding site. The larger antigenantibody interface in TNF␣ Adalimumab also provided information at a molecular level for further understanding the clinical advantages of Adalimumab therapy compared with Infliximab.TNF is an immunity-modulating cytokine required for immune processes. The unregulated activities of TNFs can lead to the development of inflammatory diseases. Excess amounts of TNF␣ expressed in cells are associated with the development of immune diseases, including rheumatoid arthritis, Crohn's disease, psoriatic arthritis, and inflammatory bowel disease (1, 2). The function of TNF␣ requires smooth interaction with its two receptors, TNF receptor 1 (TNFR1) 4 and TNF receptor 2 (TNFR2). Blocking the interaction between TNF␣ and TNFRs has successfully been developed as a therapy in treating inflammatory or autoimmune diseases (3,4). TNF␣ neutralization therapies, including the use of a soluble TNFR2-Fc recombinant (Etanercept), a mouse-human chimera mAb (Infliximab), or a human mAb (Adalimumab), have been introduced in the past decades for the management of rheumatoid arthritis and other immune diseases (5).Although all of these TNF␣ blockers function by interrupting the TNF␣-TNFR interaction, information on whether the different TNF␣ inhibitors have similar clinical efficacy remains controversial because of the lack of randomized clinical trial meta-analyses. In the early stages of clinical usage of Infliximab, its discontinuation was reported to result in loss of response. This largely affected patients who received long term treatment and later discontinued use (6). Approximately 10% of...
Background: Although infliximab has high efficacy in treating TNF␣-associated diseases, the epitope on TNF␣ remains unclear. Results: The crystal structure of the TNF␣ in complex with the infliximab Fab is reported at a resolution of 2.6 Å. Conclusion: TNF␣ E-F loop plays a crucial role in the interaction. Significance: The structure may lead to understanding the mechanism of mAb anti-TNF␣.
2019-nCoV, which is a novel coronavirus emerged in Wuhan, China, at the end of 2019, has caused at least infected 11,844 as of Feb 1, 2020. However, there is no specific antiviral treatment or vaccine currently. Very recently report had suggested that novel CoV would use the same cell entry receptor, ACE2, as the SARS-CoV. In this report, we generated a novel recombinant protein by connecting the extracellular domain of human ACE2 to the Fc region of the human immunoglobulin IgG1. An ACE2 mutant with low catalytic activity was also used in the study. The fusion proteins were then characterized. Both fusion proteins has high affinity binding to the receptor-binding domain (RBD) of SARS-CoV and 2019-nCoV and exerted desired pharmacological properties. Moreover, fusion proteins potently neutralized SARS-CoV and 2019-nCoV in vitro. As these fusion proteins exhibit cross-reactivity against coronaviruses, they could have potential applications for diagnosis, prophylaxis, and treatment of 2019-nCoV.author/funder. All rights reserved. No reuse allowed without permission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.