Cardiac mitochondria are composed of two distinct subpopulations: one beneath the sarcolemma (subsarcolemmal mitochondria: SSM), and another along the myofilaments (interfibrillary mitochondria: IFM). Previous studies suggest a preferential loss of IFM function with age; however, the age-related changes in oxidative stress in these mitochondrial subpopulations have not been examined. To this end, the changes in mitochondrial antioxidant capacity, oxidant output, and oxidative damage to Complex IV in IFM and SSM from young and old rats were studied. Results show no apparent differences in any parameters examined between IFM and SSM from young rats. However, relative to young, only IFM from old rats had a significantly higher rate of oxidant production and a decline in mitochondrial ascorbate levels and GSH redox status. The age-related decline in mitochondrial antioxidant capacity in IFM was accompanied by a marked loss in glutaredoxin and GSSG reductase activities, suggesting a diminished reductive capacity in IFM with age. Moreover, the loss in Complex IV activity was limited to the IFM of old rats, which was accompanied by a 4-fold increase in 4-hydroxynonenal-modified Complex IV. Thus, mitochondrial decay is not uniform and further indicates that myofibrils may be uniquely under oxidative stress in the aging heart.
Glutathione (GSH) and glutathione disulfide (GSSG) form the principal thiol redox couple in the endoplasmic reticulum (ER); however, few studies have attempted to quantify GSH redox status in this organelle. To address this gap, GSH and GSSG levels and the extent of protein glutathionylation were analyzed in rat liver microsomes. Because of the likelihood of artifactual GSH oxidation during the lengthy microsomal isolation procedure, iodoacetic acid (IAA) was used to preserve the physiological thiol redox state. Non-IAA-treated microsomes exhibited a GSH:GSSG ratio between 0.7:1 to 1.2:1 compared to IAA-treated microsomes that yielded a GSH:GSSG redox ratio between 4.7:1 and 5.5:1. The majority of artifactual oxidation occurred within the first 2 h of isolation. Thus, the ER GSH redox ratio is subject to extensive ex vivo oxidation and when controlled, the microsomal GSH redox state is significantly higher than previously believed. Moreover, in vitro studies showed that PDI reductase activity was markedly increased at this higher thiol redox ratio versus previously reported GSH:GSSG ratios for the ER. Lastly, we show by both HPLC and Western blot analysis that ER proteins are highly resistant to glutathionylation. Together, these results may necessitate a re-evaluation of GSH and its role in ER function.
The aging heart displays a loss of bioenergetic reserve capacity partially mediated through lower fatty acid utilization. We investigated whether the age-related impairment of cardiac fatty acid catabolism occurs, at least partially, through diminished levels of L-carnitine, which would adversely affect carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme for fatty acyl-CoA uptake into mitochondria for β-oxidation. Old (24–28 mos) Fischer 344 rats were fed ± acetyl-L-carnitine (ALCAR; 1.5% [w/v]) for up to four weeks prior to sacrifice and isolation of cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. IFM displayed a 28% (p < 0.05) age-related loss of CPT1 activity, which correlated with a decline (41%, p < 0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished Vmax and Km (60% and 49% respectively, p < 0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to L-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of L-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.