Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.