Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD.
Hypoxic microenvironment deregulates metabolic homeostasis in cancer cells albeit the underlying mechanisms involved in this process remain hitherto enigmatic. 14-3-3ζ/Yes-associated protein (YAP) axis plays a principal role in malignant transformation and tumor development. Here, we report that hypoxia disassembles 14-3-3ζ from YAP and thereby promotes YAP nuclear localization mediated by ERK2, which directly binds to the D-site of mitogen-activated protein kinase (MAPK) docking domain in 14-3-3ζ Leu98/100 and phosphorylates 14-3-3ζ at Ser37. When localizing in nucleus, YAP recruits at pyruvate kinase M2 (PKM2) gene promoter with hypoxia-inducible factor 1α (HIF-1α), for which PKM2 transcription is required. 14-3-3ζ Ser37 phosphorylation is instrumental for the hypoxia-induced glucose uptake, lactate production, and clonogenicity of pancreatic ductal adenocarcinoma (PDAC) cells, as well as tumorigenesis in mice. The 14-3-3ζ Ser37 phosphorylation positively correlates with p-ERK1/2 activity and HIF-1α expression in clinical samples from patients with PDAC and predicts unfavorable prognosis. Our findings underscore an appreciable linkage between YAP transcriptional activation and hypoxic glycolysis governed by ERK2-dependent 14-3-3ζ Ser37 phosphorylation for malignant progression of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.