Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.
The effects of TGF-β on dendritic cells (DCs) on the tumor microenvironment are not well understood. We report, here, the establishment of an in vitro lung cancer microenvironment by co-incubation of seminaphtharhodafluor (SNARF) labeled Lewis lung cancer (LLC) cells, carboxyfluorescein succinimidyl ester (CFSE) labeled fibroblasts and 4-chloromethyl-7-hydroxycoumarin (CMHC) labeled DCs. Raw 264.7, EL4 and NCI-H446 cells were able to synthesize TGF-β which was determined by flow cyto-metry and western blotting, respectively. Furthermore, TGF-β efficiently increased regulatory T-cell (Treg) expansion and upregulated DC B7H1 and GITRL expression. TGF-β and the co-incubation of LLC cells, fibroblasts with DCs could augment the expression of B7H1 and GITRL molecules of DCs. The data presented here indicate that the B7H1 and GITRL molecules may play an important role in TGF-β-induced Treg expansion of lung cancer microenvironment.
Multidrug resistance (MDR) formation is an important problem in lung cancer chemotherapy. Our study showed that both camptothecin and cisplatin could not only induce ATM and NF-κB activation but also upregulate expression of the MDR-related genes ABCG2, MRP2 in NCI-H446 cells. Moreover, camptothecin and cisplatin-induced ABCG2 and MRP2 upregulation could be impaired by ATM and NF-κB inhibitors, indicating a relationship between ATM, NF-κB activation and MDR formation in lung cancer chemo-therapy. Our study indicates that ATM may serve as a potential molecular target for MDR formation in lung cancer chemotherapy.
Developing agents with 'seek, treat and see' capability is critical for personalized molecular medicine. Those agents will specifically target the disease markers for diagnosis and apply the biologically effective dose for treatment. Retinoids regulate a multitude of biological processes. In addition, retinoic acid can reverse premalignancy, significantly decrease second primary tumors and provide a treatment benefit in head and neck, lung, esophagus, colon and bladder cancer. These data suggest that cancer cells can take up retinoids. Therefore, retinoids are potential tumor-imaging agents. We developed near-infrared (NIR)-labeled retinoid agents to detect human cancers, visualize drug redistribution within the body, determine the optimal biological dose and reduce systemic toxicity. Our data demonstrate that the retinoid agent, but not the free dye, binds to the human tumor cells and is internalized, where it permits the imaging of human cancer xenografts. The high dose of retinoid agent is significantly associated with systemic toxicity. In summary, synthetic NIR-labeled retinoid agents can be used to detect multiple human cancer xenografts as the agent is internalized by cancer cells. The binding of the agent to the tumor xenografts is dependent on the redistribution of the agent. Therapeutic agents labeled with reporters will interrogate tumor-drug interactions and permit analysis of biodistribution, pharmacokinetics and pharmacodynamics in real time. At the same time, we can apply the biologically effective dose for therapy, instead of the traditional maximum tolerated dose, to reduce systemic toxicity.
Cholinergic anti-inflammatory pathway has therapeutic effect on inflammation-associated diseases. However, the exact mechanism of nicotine-mediated anti-inflammatory effect is still unclear. TIPE2, a new member of tumor necrosis factor-α-induced protein-8 family, is a negative regulator of immune homeostasis. However, the roles of TIPE2 in cholinergic anti-inflammatory effect are still uncertain. Here, we demonstrated that nicotine exerts its anti-inflammatory effect by TIPE2 upregulation and phosphorylated stat3 mediated the inhibition of NF-κB activation, which was supported by the following evidence: firstly, both nicotine and TIPE2 inhibit pro-inflammatory cytokine release via NF-κB inactivation. Secondly, nicotine upregulates TIPE2 expression via α7 nicotinic acetylcholine receptor. Moreover, the enhancement of stat3 phosphorylation and decrease of LPS-induced p65 translocation were achieved by nicotine treatment. Importantly, nicotine treatment augments the interaction of phosphorylated stat3 and p65, indicating that the inhibitory effect of nicotine on NF-κB activation was mediated with protein-protein interactions. Hence, this study revealed that TIPE2 upregulation and stat3 phosphorylation contribute to nicotine-mediated anti-inflammation effect, indicating that TIPE2 and stat3 might be potential molecules for dealing with inflammation-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.