Magnetic/antibacterial bifunctional nanoparticles were fabricated through the immobilization of antibacterial N-halamine on silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) (PSA) nanoparticles. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The N-halamine was developed from the precursor 5,5-dimethylhydantoin (DMH) by chlorination treatment, and experimental results showed that the loading amount of DMH on the silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) nanoparticles was adjustable. The as-synthesized nanoparticles exhibited superparamagnetic behavior and had a saturation magnetization of 18.93 emu g(-1). Antibacterial tests showed that the resultant nanoparticles displayed enhanced antibacterial activity against both Gram-positive and Gram-negative bacteria compared with their bulk counterparts.
Hierarchical hollow structure ZnO (CZ-400) was synthesized successfully by a facile homogeneous precipitation method. Morphology, structure, and optical properties of the as-prepared CZ-400 were characterized by different techniques. The mentioned product possessed hollow core and hierarchical shell morphology, and grew well-crystallinity with high surface area. The CZ-400 exhibited adsorption capacity and photocatalyst activity toward congo red (CR) higher than those of TiO 2 P25 and commercial ZnO. This is attributed to the hierarchical structure of CZ-400, which provides the improved charge transport and the reduced recombination rate of photogenerated electron−hole pairs. In addition, the combinatorial effect of adsorption and photodegradation reflected the importance of adsorption in the enhanced photoreactivity. The results indicated that CZ-400 is a potential catalyst and adsorbent material for removal of CR from water samples.
Zinc oxides have gained exciting achievements in antimicrobial fields because of their advantageous properties, whereas their biological effects on bacteria are currently underexplored. In this study, biological effects of flower-shaped nano zinc oxides on bacteria were systematically investigated. Zinc oxide nanoflowers with controllable morphologies (viz., rod flowers, fusiform flowers, and petal flowers) were synthesized by modulating merely base type and concentration using the hydrothermal process. Their antibacterial power is in an order of petal flowers > fusiform flowers > rod flowers because of their differences in microscopic parameters such as specific surface area, pore size, and Zn-polar plane, etc. More importantly, the role of morphology in influencing biological effect on bacteria was examined, focusing on the morphology-induced effect on integrality of cell wall, permeability of cell membrane, DNA cleavage, etc. As for cytotoxicity, all petal flowers, fusiform flowers, and rod flowers show trivial cytotoxicity to the Hela cells. This work provides a guide for enhancing biological effect of the biocides on pathogenic bacteria by the morphological modulation.
Novel recyclable bactericidal materials, barbituric acid-based magnetic N-halamine nanoparticles (BAMNH NPs), were fabricated by coating of magnetic silica nanoparticles (MS NPs) with barbituric acid-based N-halamine by the aid of the radical polymerization. The sterilizing effect on the bacterial strain is investigated by incubating Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis). The as-prepared BAMNH NPs exhibit higher biocidal activity than the bulk powder barbituric acid-based N-halamine due to the high activated surface area. The structural effect of N-halamine on antimicrobial performance was fully clarified through the comparison between BAMNH NPs and hydantoin-based magnetic N-halamine nanoparticles (HMNH NPs). BAMNH NPs exhibited promising stability toward repeated washing and long-term storage. BAMNH NPs with different chlorine content were comparatively chosen to investigate the influence of chlorine content on the antimicrobial activity. An antibacterial recycle experiment revealed that no significant change occurred in the structure and antibacterial efficiency of BAMNH NPs after five recycle experiments. The combination of barbituric acid-based N-halamine with magnetic component results in an obvious synergistic effect and facilitates the repeated antibacterial applications, providing potential and ideal candidates for sterilization or even for the control of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.