Osteoarthritis (OA) is the most common form of arthritis and is caused by the breakdown of joint cartilage. The present study aimed to investigate an effective method for the treatment of OA. It was demonstrated that, compared with other patients, patients with OA exhibited lower mRNA expression levels of SMAD family member 2 (SMAD2). MicroRNA (miR)‑486‑5p was predicted to bind with SMAD2, which was verified by dual‑luciferase reporter assay. Compared withcontrol patients who had no known history of OA or rheumatoid arthritis, patients with OA exhibited higher miR‑486‑5p expression level. Treatment with miR‑486‑5p mimics inhibited proliferation and migration of CHON‑001 human chondrocytes, and also inhibited the expression levels of type II collagen and aggrecan. However, treatment with a miR‑486‑5p inhibitor promoted proliferation and migration, and the expression of type II collagen and aggrecan. Short interfering RNA‑directed silencing of SMAD2 reversed the upregulated proliferation and migration and the expression level of type II collagen and aggrecan induced by the miR‑486‑5p inhibitor. In conclusion, the results of the present study indicated that miR‑486‑5p was upregulated in OA and may inhibit chondrocyte proliferation and migration by suppressing SMAD2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.