By using high-temperature deep-level transient spectroscopy (HT-DLTS) and other electrical measurement techniques, localized deep levels in n-type Al x Ga 1−x N epitaxial films with various Al compositions (x = 0, 0.14, 0.24, 0.33, and 0.43) have been investigated. It is found that there are three distinct deep levels in Al x Ga 1−x N films, whose level position with respect to the conduction band increases as Al composition increases. The dominant defect level with the activation energy deeper than 1.0 eV below the conduction band closely follows the Fermi level stabilization energy, indicating that its origin may be related to the defect complex, including the anti-site defects and divacancies in Al x Ga 1−x N films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.