In recent years, radio frequency identification (RFID) microwave technology receives great attention because of its advantages, e.g. long identification distance, small size of antenna, high identification speed and strong anti-collision ability. RFID tag plays one of the most important roles in logistics, and therefore special attention should be paid to tag design. In this paper, we present a 2.45G semi-active tag design, which is compatible with ISO 18000-4. The proposed tag can switch the manners of working between active and passive. When the generated RF-power is sufficient to operate, the tag works as a passive tag, and low noise amplifier (LNA), oscillator (OSC) and power amplifier (PA) are cut off to save the whole chip power consumption mostly. Otherwise it operates in active mode using battery power, and the working distance is greatly increased as a result of using PA.
This paper focus on the application study of HPC, and both of HPC and normal concrete (NC) were adopted for comparison in the Yu-Cheng Bridge Durability tests were carried out on HPC and NC respectively, based on the comparative analysis of the results obtained from these tests, durability evaluation of HPC is made. The results are useful for the evaluation of durability of HPC.
Using virtual instrument technology, digital signal processing technology and traditional optical radiation measuring technology to construct optical radiation measuring system breaks the construction methods of traditional instruments. Signal processing, collection, control and process of measuring system are implemented by the software LabVIEW8.2. And they are integrated in a computer. The computer not only is data processing center, but also is instrument control center. While measuring, the user uses the mouse to operate the handles including knobs, switch and buttons of virtual instrument panel to select instrument functions and set various parameters, which realizes measuring optical radiation with different wave bands and different intensity. And the user can change instrument operation panel, modify system software, transform instrument function, and customize instrument parameters, which embodies the idea that the software is the instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.