Aims. The primary motivation of this paper is to provide accurate atomic properties of F-like ions with Z = 20−30, including energy levels, line strengths, static dipole polarizabilities, and lifetimes. In addition, a detailed analysis is also carried out to explore the convergence and uncertainties of our results.
Methods. Large-scale B-spline relativistic configuration interaction calculations are carried out to generate the atomic properties of F-like ions. The radial parts of one-electron Dirac orbitals are obtained from the relativistic self-consistent field procedure in which the Breit Interaction and QED corrections (vacuum polarization and self-energy terms) are also included. A numerical method, called Emu CI, is adopted to decrease the size of CI matrix significantly without loss of much accuracy.
Results. Energy levels and line strengths for electric-dipole (E1), electric-quadrupole (E2), and magnetic-dipole (M1) transitions are provided for the 250 lowest levels of each system, showing a good agreement with available theoretical and experimental information. The static dipole polarizabilities and lifetimes for the ten lowest states are also reported. A statement for the convergence and uncertainties of our results is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.