BackgroundIn order to search for new structural modification strategies on fluoroquinolones, we have designed and synthesized a series of fluoroquinolone derivatives by linking various hydrazine compounds to the C-3 carboxyl group of levofloxacin and assessed their anticancer activities. Several novel levofloxacin derivatives displayed potent cytotoxicity against the tested cancer cell lines in vitro. In the present study, we investigated the effect of 1-Cyclopropyl-6-fluoro-4-oxo-7- piperazin-1, 4-dihydro- quinoline- 3-carboxylic acid benzo [1,3] dioxol-5- ylmethylene- hydrazide (QNT11) on the apoptosis of human hepatocarcinoma cells in vitro.MethodsThe inhibition effects of QNT11 on cell proliferation were examined by MTT assay. Cell apoptosis was determined by TUNEL and DNA agarose gel electrophoresis method. The topoisomerase ΙΙ activity was measured by agarose gel electrophoresis using Plasmid pBR322 DNA as the substrate. Cell cycle progression was analyzed using flow cytometry in conjunction with ethanol fixation and propidium iodide staining. Mitochondrial membrane potential (△ψm) was measured by high content screening image system. The caspase-9, caspase-8, caspase-3, Bcl-2, Bax, CDK1, Cyclin B1and cytochrome c protein expressions were detected by Western blot analysis.ResultsQNT11 showed selective cytotoxicity against Hep3B, SMMC-7721, MCF-7 and HCT-8 cell lines with IC50 values of 2.21 μM, 2.38 μM, 3.17 μM and 2.79 μM, respectively. In contrast, QNT11 had weak cytotoxicity against mouse bone marrow mesenchymal stem cells (BMSCs) with IC50 value of 7.46 μM. Treatment of Hep3B cells with different concentrations of QNT11 increased the percentage of the apoptosis cells significantly, and agarose gel electrophoresis revealed the ladder DNA bands typical of apoptotic cells, with a decrease in the mitochondrial membrane potential. Compared to the control group, QNT11 could influence the DNA topoisomerase IIactivity and inhibit the religation of DNA strands, thus keeping the DNA in fragments. There was a significant increase of cytochrome c in the cytosol after 24 h of treatment with QNT11 and a decrease in the mitochondrial compartment. Observed changes in cell cycle distribution by QNT11 treated might be caused by insufficient preparation for G2/M transition. In addition, QNT11 increased the protein expression of Bax, caspase-9, caspase-8, caspase-3, as well as the cleaved activated forms of caspase-9, caspase-8 and caspase-3 significantly, whereas the expression of Bcl-2 decreased.ConclusionsOur results showed that QNT11 as a fluoroquinolone derivative exerted potent and selectively anticancer activity through the mechanism of eukaryotic topoisomerase II poisoning. The growth inhibition was in large part mediated via apoptosis-associated mitochondrial dysfunction and regulation of Bcl-2 signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.