Radiotherapy concurrent with a 3-week schedule of PTX and DDP resulted in an encouraging overall survival rate, but a relatively higher hematological toxicity.
This study was carried out to determine whether mesenchymal stem cells (MSCs) derived from teratoma of human embryonic stem cells (hESCs) function as feeder cells to support hESCs growth. Approximately 5x10(6) hESCs were injected into the hind limb muscle of each SCID-beige mouse to form teratoma. After 8 weeks, the MSCs were isolated from the teratoma and cultured in Mesencult medium. Purified MSCs were then used as the feeder cells for hESCs culture. High purity MSCs derived from teratoma were isolated. The cells were morphologically similar to bone marrow MSCs (bMSCs). The teratoma-derived MSCs were negative for CD34 and CD45 but positive for CD29, CD49b, CD105, CD73, and CD90, which resembled those expressed by bMSCs. After passaged on MSCs feeder cells more than 10 passages, hESCs maintained hESC characteristics in morphology. Reverse PCR showed the expression of Oct4 and Nanog. SSEA-1 was negative and SSEA-4, TRA-1-60, and TRA-1-81 were positive. Alkaline phosphatase staining showed positive results.The karyotype remained normal. Moreover, the hECSs cultured on teratoma-derived MSCs formed teratoma in vivo and embryoid body in vitro confirmed their pluripotency. Accordingly, MSCs derived from hESCs by in vivo differentiation can be used as the feeder cells for hESCs culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.