The QutR protein is a multidomain repressor protein that interacts with the QutA activator protein. Both proteins are active in the signal transduction pathway that regulates transcription of the quinic acid utilization (qut) gene cluster of the microbial eukaryote Aspergillus nidulans. In the presence of quinate, production of mRNA from the eight genes of the qut pathway is stimulated by the QutA activator protein. The QutR protein plays a key role in signal recognition and transduction, and a deletion analysis has shown that the N-terminal 88 amino acids are sufficient to inactivate QutA function in vivo. Using surface plasmon resonance we show here that the N-terminal 88 amino acids of QutR are able to bind in vitro to a region of QutA that genetic analysis has previously implicated in transcription activation. We further show that increasing the concentration of a full-length (missense) mutant QutR protein in the original mutant strain can restore its repressing function. This is interpreted to mean that the qutR mutation in this strain increases the equilibrium dissociation constant for the interaction between QutA and QutR. We propose a model in which the QutA and QutR proteins are in dynamic equilibrium between bound (transcriptionally inactive) and unbound (transcriptionally active) states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.