BackgroundMany neurodegenerative diseases are associated with protein misfolding/aggregation. Treatments mitigating the effects of such common pathological processes, rather than disease-specific symptoms, therefore have general therapeutic potential.ResultsHere we report that the anti-epileptic drug ethosuximide rescues the short lifespan and chemosensory defects exhibited by C. elegans null mutants of dnj-14, the worm orthologue of the DNAJC5 gene mutated in autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. It also ameliorates the locomotion impairment and short lifespan of worms expressing a human Tau mutant that causes frontotemporal dementia. Transcriptomic analysis revealed a highly significant up-regulation of DAF-16/FOXO target genes in response to ethosuximide; and indeed RNAi knockdown of daf-16 abolished the therapeutic effect of ethosuximide in the worm dnj-14 model. Importantly, ethosuximide also increased the expression of classical FOXO target genes and reduced protein aggregation in mammalian neuronal cells.ConclusionsWe have revealed a conserved neuroprotective mechanism of action of ethosuximide from worms to mammalian neurons. Future experiments in mouse neurodegeneration models will be important to confirm the repurposing potential of this well-established anti-epileptic drug for treatment of human neurodegenerative diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-015-0046-3) contains supplementary material, which is available to authorized users.
HighlightsWorms with mutant GABAA receptors exhibit convulsions upon exposure to pentylenetetrazol.Convulsions are prevented by the approved anti-epileptic drug, ethosuximide.C. elegans model is a higher throughput, ethical alternative to rodent seizure models.
Graphical abstractCRMs activate Nrf2, but inhibit NF-κB, and GSH depletion without covalent modification activates both Nrf2 and NF-κB. This leads to cellular protection against the potentially harmful effects of redox perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.