Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)–hypoxia-inducible factor-1α (HIF-1α)–vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK–HIF-1α–VEGF signaling pathway.Electronic supplementary materialThe online version of this article (doi:10.1007/s10456-016-9522-9) contains supplementary material, which is available to authorized users.
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis.
TAE followed by the long-term administration of octreotide and celecoxib can synergistically prolong the survival of rabbits with hepatic VX2 allografts by inhibiting potential neoangiogenesis, tumor growth and metastasis.
A 14 kilobase (kb) genomic clone of the gene for bovine elastin, containing exons 1 and 2, has been characterized. This clone extends about 6.5 kb in the 5' direction from the initiation codon and 978 nucleotides in the 3' direction from exon 2. The size of the first intron is about 6.4 kb. The sequence immediately 5' to the initiation codon is highly conserved between the genes for bovine and human elastins and contains a TATA box consensus sequence (ATAAA), CAAT, and Sp1 binding sites. Several putative AP-2 binding sites are also present. Comparative analysis of the sequences flanking the first exon in the genes for bovine and human elastins identified conserved sequences that may be regulatory control elements. A putative enhancer core sequence is present in the first intron of the genes for bovine and human elastins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.