Size-controlled soft-template synthesis of carbon nanodots (CNDs) as novel photoactive materials is reported. The size of the CNDs can be controlled by regulating the amount of an emulsifier. As the size increases, the CNDs exhibit blue-shifted photoluminescence (PL) or so-called an inverse PL shift. Using time-correlated single photon counting, ultraviolet photoelectron spectroscopy, and low-temperature PL measurements, it is revealed that the CNDs are composed of sp² clusters with certain energy gaps and their oleylamine ligands act as auxochromes to reduce the energy gaps. This insight can provide a plausible explanation on the origin of the inverse PL shift which has been debatable over a past decade. To explore the potential of the CNDs as photoactive materials, several prototypes of CND-based optoelectronic devices, including multicolored light-emitting diodes and air-stable organic solar cells, are demonstrated. This study could shed light on future applications of the CNDs and further expedite the development of other related fields.
Distinct from conventional carbon nanostructures, such as fullerene, graphene, and carbon nanotubes, carbon nanodots (C-dots) exhibit unique properties such as strong fluorescence, high photostability, chemical inertness, low toxicity, and biocompatibility. Various synthetic routes for C-dots have been developed in the last few years, and now intense research efforts have been focused on improving their functionality. In this aspect, doping and surface functionalization are two major ways to control the chemical, optical, and electrical properties of C-dots. Doping introduces atomic impurities into C-dots to modulate their electronic structure, and surface functionalization modifies the C-dot surface with functional molecules or polymers. In this review, we summarize recent progress in doping and surface functionalization of C-dots for improving their functionality, and offer insight into controlling the properties of C-dots for a variety of applications ranging from biomedicine to optoelectronics to energy.
Highly luminescent graphitic carbon quantum dots (GQDs) are synthesized employing reverse micelles as nanoreactors. This method offers size tunability and narrow size distribution without any unpractical size separation process. Also, high quantum yields of maximum 35% at the 360 nm excitation wavelength are achieved.
The atomic layer deposition (ALD) of silicon dioxide (SiO 2 ) was initially explored using a variety of silicon precursors with H 2 O as the oxidant. The silicon precursors were (N,N-dimethylamino)trimethylsilane) (CH 3 ) 3 SiN(CH 3 ) 2 , vinyltrimethoxysilane CH 2 dCHSi(OCH 3 ) 3 , trivinylmethoxysilane (CH 2 dCH) 3 SiOCH 3 , tetrakis(dimethylamino)silane Si(N(CH 3 ) 2 ) 4 , and tris(dimethylamino)silane (TDMAS) SiH(N(CH 3 ) 2 ) 3 . TDMAS was determined to be the most effective of these precursors. However, additional studies determined that SiH* surface species from TDMAS were difficult to remove using only H 2 O. Subsequent studies utilized TDMAS and H 2 O 2 as the oxidant and explored SiO 2 ALD in the temperature range of 150-550 °C. The exposures required for the TDMAS and H 2 O 2 surface reactions to reach completion were monitored using in situ FTIR spectroscopy. The FTIR vibrational spectra following the TDMAS exposures showed a loss of absorbance for O-H stretching vibrations and a gain of absorbance for C-H x and Si-H stretching vibrations. The FTIR vibrational spectra following the H 2 O 2 exposures displayed a loss of absorbance for C-H x and Si-H stretching vibrations and an increase of absorbance for the O-H stretching vibrations. The SiH* surface species were completely removed only at temperatures >450 °C. The bulk vibrational modes of SiO 2 were observed between 1000-1250 cm -1 and grew progressively with number of TDMAS and H 2 O 2 reaction cycles. Transmission electron microscopy (TEM) was performed after 50 TDMAS and H 2 O 2 reaction cycles on ZrO 2 nanoparticles at temperatures between 150-550 °C. The film thickness determined by TEM at each temperature was used to obtain the SiO 2 ALD growth rate. The growth per cycle varied from 0.8 Å/cycle at 150 °C to 1.8 Å/cycle at 550 °C and was correlated with the removal of the SiH* surface species. SiO 2 ALD using TDMAS and H 2 O 2 should be valuable for SiO 2 ALD at temperatures >450 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.