Since the discovery of qnrA in 1998, two additional qnr genes, qnrB and qnrS, have been described. These three plasmid-mediated genes contribute to quinolone resistance in gram-negative pathogens worldwide. A clinical strain of Proteus mirabilis was isolated from an outpatient with a urinary tract infection and was susceptible to most antimicrobials but resistant to ampicillin, sulfamethoxazole, and trimethoprim. Plasmid pHS10, harbored by this strain, was transferred to azide-resistant Escherichia coli J53 by conjugation. A transconjugant with pHS10 had low-level quinolone resistance but was negative by PCR for the known qnr genes, aac(6)-Ib-cr and qepA. The ciprofloxacin MIC for the clinical strain and a J53/pHS10 transconjugant was 0.25 g/ml, representing an increase of 32-fold relative to that for the recipient, J53. The plasmid was digested with HindIII, and a 4.4-kb DNA fragment containing the new gene was cloned into pUC18 and transformed into E. coli TOP10. Sequencing showed that the responsible 666-bp gene, designated qnrC, encoded a 221-amino-acid protein, QnrC, which shared 64%, 42%, 59%, and 43% amino acid identity with QnrA1, QnrB1, QnrS1, and QnrD, respectively. Upstream of qnrC there existed a new IS3 family insertion sequence, ISPmi1, which encoded a frameshifted transposase. qnrC could not be detected by PCR, however, in 2,020 strains of Enterobacteriaceae. A new quinolone resistance gene, qnrC, was thus characterized from plasmid pHS10 carried by a clinical isolate of P. mirabilis.Plasmid-mediated quinolone resistance was first described for a ciprofloxacin-resistant strain of Klebsiella pneumoniae in 1998 (15). The responsible gene, qnr (later named qnrA), was located on plasmid pMG252, which encodes multidrug resistance proteins. qnrB and qnrS were discovered in 2005 and 2006, respectively, and mediated similar levels of ciprofloxacin resistance (9, 11). Qnr proteins belong to the pentapeptide repeat protein (PRP) family and protect DNA gyrase and topoisomerase IV from quinolone inhibition (26,27,28). qnr genes show a high level of diversity; there are at least 6 qnrA, 20 qnrB, and 3 qnrS alleles reported, with one or more amino acid alterations within each family (12; http://www.lahey.org /qnrStudies). More recently, qnrD was found in Salmonella isolates (3). qnr genes are widely distributed in clinical Enterobacteriaceae isolates around the world and are usually associated with mobile elements (21). There were also qnr-like genes found on the chromosomes of Vibrio vulnificus, Vibrio parahaemolyticus, Photobacterium profundum, Stenotrophomonas maltophilia, and gram-positive genera such as Enterococcus, Listeria, Clostridium, and Bacillus (1,17,22,24). The wide distribution of qnr genes in different species of Enterobacteriaceae and their high degree of diversity raise the concern that there might be more qnr genes that have not yet been discovered. In this study, a new plasmid-mediated quinolone resistance gene, qnrC, was found on and cloned from a transferable plasmid, pHS10, in a clinical ...
This study was to estimate the prevalence and characteristics of Staphylococcus aureus from 1,850 retail meat and meat products in China during July 2011 to June 2016. The samples were collected covering most provincial capitals in China, including 604 raw meat, 601 quick-frozen meat, and 645 ready-to-eat meat. Using the qualitative and quantitative methods, all 39 cities had S. aureus-positive samples, and S. aureus was detected in 35.0% (647/1,850) of the samples. The levels of S. aureus in retail meat showed that the MPN value of the majority of the positive samples ranged from 0.3 to 100 MPN/g. Twenty-four antibiotics were used to test all 868 S. aureus isolates for antibiotic susceptibility. Only 11 isolates (1.26%) were susceptible to all antibiotics, whereas most isolates (821/868, 94.6%) showed resistance or intermediary resistance to more than three or more antibiotics. Of these strains, 104 (12.0%) were resistant to more than 10 antibiotics. However, the most frequent resistance was observed to ampicillin (85.4%), followed by penicillin (84.6%), erythromycin (52.7%), tetracycline (49.3%), kanamycin (45.3%), telithromycin (30.1%), clindamycin (29.6%), streptomycin (21.1%), norfloxacin (20.4%), gentamicin (19.4%), fusidic acid (18.4%), ciprofloxacin (16.9%), chloramphenicol (13.1%), amoxycillin/clavulanic acid (11.0%), and others (<10%). 7.4% of isolates (62/868) were confirmed as methicillin-resistance S. aureus (MRSA). By molecular typing analysis, there were 164 spa types and 111 STs were identified, including 15 novel spa types and 65 newly STs by multilocus sequence typing (MLST) and spa typing. Despite the wide genetic diversity observed among the 868 isolates, a great proportion of the population belonged to finite number of major clones: ST1-t127 (93/868, 10.7%) and ST7-t091 (92/868, 10.6%), ST5-t002 (42/868, 4.8%), ST398-t034 (40/868, 4.6%), ST188-t034 (38/868, 4.4%), ST59-t437 (30/868, 3.5%), ST6-t701 (29/868, 3.3%), and ST9-t899 (27/868, 3.1%) in China. This study reflects S. aureus was readily detected in Chinese retail meat and meat products but the level were not very excessive. In this study, the high antibiotic resistance is alarming and raising public health concern. In additions, most of molecular types of isolates have been linked to human infections around the world, indicating that these types of S. aureus in China have a theoretical pathogenic potential.
Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27%) were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII) and one emetic gene (cesB). Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.