Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described although two connected processes, gynoecium and ovule development, have been investigated. Here we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongate, the boundaries of existing ovules enlarge and new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate to ovule primordia initiation asynchronous. We established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormones signaling, and many new genes are identified to involve in ovule development. Taken together, our results illustrate the ovule primordia initiate asynchronously and the hormone signal involve in the asynchrony.
ORCID IDs: 0000-0001-6345-6855 (J.-G.W.); 0000-0002-3501-5857 (Y.Z.).Plant vacuoles are versatile organelles critical for plant growth and responses to environment. Vacuolar proteins are transported from the endoplasmic reticulum via multiple routes in plants. Two classic routes bear great similarity to other phyla with major regulators known, such as COPII and Rab5 GTPases. By contrast, vacuolar trafficking mediated by adaptor protein-3 (AP-3) or that independent of the Golgi has few recognized cargos and none of the regulators. In search of novel regulators for vacuolar trafficking routes and by using a fluorescence-based forward genetic screen, we demonstrated that the multispan transmembrane protein, Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is an AP-3-mediated vacuolar cargo. We show that the tonoplast targeting of PAT10 is mediated by the AP-3 complex but independent of the Rab5-mediated post-Golgi trafficking route. We also report that AP-3-mediated vacuolar trafficking involves a subpopulation of COPII and requires the vacuolar tethering complex HOPS. In addition, we have identified two novel mutant alleles of AP-3d, whose point mutations interfered with the formation of the AP-3 complex as well as its membrane targeting. The results presented here shed new light on the vacuolar trafficking route mediated by AP-3 in plant cells.
BackgroundHybrid vigor is highly valued in the agricultural industry. Male sterility is an important trait for crop breeding. Pollen development is under strict control of both gametophytic and sporophytic factors, and defects in this process can result in male sterility. Both in the dicot Arabidopsis and in the moncot rice, proper timing of programmed cell death (PCD) in the tapetum ensures pollen development. Dynamic ROS levels have been reported to control tapetal PCD, and thus pollen development, in Arabidopsis and rice. However, it was unclear whether it is evolutionarily conserved, as only those two distantly related species were studied.ResultsHere, we performed histological analyses of anther development of two economically important dicot species, tobacco and tomato. We identified the same ROS amplitude during anther development in these two species and found that dynamic ROS levels correlate with the initiation and progression of tapetal PCD. We further showed that manipulating ROS levels during anther development severely impaired pollen development, resulting in partial male sterility. Finally, real-time quantitative PCR showed that several tobacco and tomato RBOHs, encoding NADPH oxidases, are preferentially expressed in anthers.ConclusionThis study demonstrated evolutionarily conserved ROS amplitude during anther development by examining two commercially important crop species in the Solanaceae. Manipulating ROS amplitude through genetic interference of RBOHs therefore may provide a practical way to generate male sterile plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-1025-3) contains supplementary material, which is available to authorized users.
Pollen viability depends on dynamic vacuolar changes during pollen development involving increases and decreases of vacuolar volume through water and osmolite accumulation and vacuolar fission. Mutations in to, the genes encoding phosphatidylinositol 3,5-bisphosphate [PI(3,5)P]-converting kinases, are male gametophyte lethal in Arabidopsis () due to defective vacuolar fission after pollen mitosis I, suggesting a key role of the phospholipid in dynamic vacuolar organization. However, other genetic components that regulate the production of PI(3,5)P and its involvement in pollen germination and tube growth are unknown. Here, we identified and characterized Arabidopsis VAC14, a homolog of the yeast and metazoan VAC14s that are crucial for the production of PI(3,5)P is constitutively expressed and highly present in developing pollen. Loss of function of was male gametophyte lethal due to defective pollen development. Ultrastructural studies showed that vacuolar fission after pollen mitosis I was compromised in mutant microspores, which led to pollen abortion. We further showed that inhibiting the production of PI(3,5)P or exogenous application of PI(3,5)P mimicked or rescued the pollen developmental defect of the mutant, respectively. Genetic interference and pharmacological approaches suggested a role of PI(3,5)P in pollen germination and tube growth. Our results provide insights into the function of VAC14 and, by inference, that of PI(3,5)P in plant cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.