The performance enhancement of integrated circuits relying on dimension scaling (i.e., following Moore’s Law) is more and more challenging owing to the physical limit of Si materials. Monolithic three-dimensional (M3D) integration has been considered as a powerful scheme to further boost up the system performance. Two-dimensional (2D) materials such as MoS2 are potential building blocks for constructing upper-tier transistors owing to their high mobility, atomic thickness, and back-end-of-line (BEOL) compatible processes. The concept to integrate 2D material-based devices with Si field-effect transistor (FET) is technologically important but the compatibility is yet to be experimentally demonstrated. Here, we successfully integrated an n-type monolayer MoS2 FET on a p-type Si fin-shaped FET with 20 nm fin width via an M3D integration technique to form a complementary inverter. The integration was enabled by deliberately adopting industrially matured techniques, such as chemical mechanical planarization and e-beam evaporation, to ensure its compatibility with the existing 3D integrated circuit process and the semiconductor industry in general. The 2D FET is fabricated using low-temperature sequential processes to avoid the degradation of lower-tier Si devices. The MoS2 n-FETs and Si p-FinFETs display symmetrical transfer characteristics and the resulting 3D complementary metal-oxide-semiconductor inverter show a voltage transfer characteristic with a maximum gain of ~38. This work clearly proves the integration compatibility of 2D materials with Si-based devices, encouraging the further development of monolithic 3D integrated circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.