Long non-coding RNAs (lncRNAs) are a numerous class of newly discovered genes in the human genome, which have been proposed to be key regulators of biological processes, including stem cell pluripotency and neurogenesis. However, at present very little functional characterization of lncRNAs in human differentiation has been carried out. In the present study, we address this using human embryonic stem cells (hESCs) as a paradigm for pluripotency and neuronal differentiation. With a newly developed method, hESCs were robustly and efficiently differentiated into neurons, and we profiled the expression of thousands of lncRNAs using a custom-designed microarray. Some hESC-specific lncRNAs involved in pluripotency maintenance were identified, and shown to physically interact with SOX2, and PRC2 complex component, SUZ12. Using a similar approach, we identified lncRNAs required for neurogenesis. Knockdown studies indicated that loss of any of these lncRNAs blocked neurogenesis, and immunoprecipitation studies revealed physical association with REST and SUZ12. This study indicates that lncRNAs are important regulators of pluripotency and neurogenesis, and represents important evidence for an indispensable role of lncRNAs in human brain development.
Long noncoding RNAs (lncRNAs) are abundant in the mammalian transcriptome, and many are specifically expressed in the brain. We have identified a group of lncRNAs, including rhabdomyosarcoma 2-associated transcript (RMST), which are indispensable for neurogenesis. Here, we provide mechanistic insight into the role of human RMST in modulating neurogenesis. RMST expression is specific to the brain, regulated by the transcriptional repressor REST, and increases during neuronal differentiation, indicating a role in neurogenesis. RMST physically interacts with SOX2, a transcription factor known to regulate neural fate. RMST and SOX2 coregulate a large pool of downstream genes implicated in neurogenesis. Through RNA interference and genome-wide SOX2 binding studies, we found that RMST is required for the binding of SOX2 to promoter regions of neurogenic transcription factors. These results establish the role of RMST as a transcriptional coregulator of SOX2 and a key player in the regulation of neural stem cell fate.
Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.