Predictive coding has been widely used in legal matters to find relevant or privileged documents in large sets of electronically stored information. It saves the time and cost significantly. Logistic Regression (LR) and Support Vector Machines (SVM) are two popular machine learning algorithms used in predictive coding. Recently, deep learning received a lot of attentions in many industries. This paper reports our preliminary studies in using deep learning in legal document review. Specifically, we conducted experiments to compare deep learning results with results obtained using a SVM algorithm on the four datasets of real legal matters. Our results showed that CNN performed better with larger volume of training dataset and should be a fit method in the text classification in legal industry.
Research has shown that Convolutional Neural Networks (CNN) can be effectively applied to text classification as part of a predictive coding protocol. That said, most research to date has been conducted on data sets with short documents that do not reflect the variety of documents in real world document reviews. Using data from four actual reviews with documents of varying lengths, we compared CNN with other popular machine learning algorithms for text classification, including Logistic Regression, Support Vector Machine, and Random Forest. For each data set, classification models were trained with different training sample sizes using different learning algorithms. These models were then evaluated using a large randomly sampled test set of documents, and the results were compared using precision and recall curves. Our study demonstrates that CNN performed well, but that there was no single algorithm that performed the best across the combination of data sets and training sample sizes. These results will help advance research into the legal profession's use of machine learning algorithms that maximize performance.
A pack boriding technique was employed to obtain a hard coating on the surface of Ti6Al4V alloy in this paper. The microstructure, surface appearance, hardness depth profile and the cavitation erosion behavior of the borided samples in 3.5% NaCl solution were examined. The cavitation erosion resistance of the borided samples was significantly improved as compared with the untreated samples. Increasing in the surface hardness and the compact boride layer contribute to the significantly enhanced cavitation erosion performance of Ti6Al4V alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.