Transportation planning has been established as a key topic in the literature and social production practices. An increasing number of researchers are studying vehicle routing problems (VRPs) and their variants considering real-life applications and scenarios. Furthermore, with the rapid growth in the processing speed and memory capacity of computers, various algorithms can be used to solve increasingly complex instances of VRPs. In this study, we analyzed recent literature published between 2019 and August of 2021 using a taxonomic framework. We reviewed recent research according to models and solutions, and divided models into three categories of customer-related, vehicle-related, and depot-related models. We classified solution algorithms into exact, heuristic, and meta-heuristic algorithms. The main contribution of our study is a classification table that is available online as Appendix A. This classification table should enable future researchers to find relevant literature easily and provide readers with recent trends and solution methodologies in the field of VRPs and some well-known variants.
The wireless sensor network (WSN) plays an essential role in various practical smart applications, e.g., smart grids, smart factories, Internet of Things, and smart homes, etc. WSNs are comprised and embedded wireless smart sensors. With advanced developments in wireless sensor networks research, sensors have been rapidly used in various fields. In the meantime, the WSN performance depends on the coverage ratio of the sensors being used. However, the coverage of sensors generally relates to their cost, which usually has a limit. Hence, a new bi-tuning simplified swarm optimization (SSO) is proposed that is based on the SSO to solve such a budget-limited WSN sensing coverage problem to maximize the number of coverage areas to improve the performance of WSNs. The proposed bi-tuning SSO enhances SSO by integrating the novel concept to tune both the SSO parameters and SSO update mechanism simultaneously. The performance and applicability of the proposed bi-tuning SSO using seven different parameter settings are demonstrated through an experiment involving nine WSN tests ranging from 20, 100, to 300 sensors. The proposed bi-tuning SSO outperforms two state-of-the-art algorithms: genetic algorithm (GA) and particle swarm optimization (PSO), and can efficiently accomplish the goals of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.