A sandwich structure of Ni/Nb/4H-SiC was prepared and annealed at different temperature from 750°C to 1050°C. The electrical property and crystalline structure of Ni/Nb electrode was characterized by transmission line method and X-ray diffraction. It was found that the annealing temperature and the thickness of Ni/Nb layer played an important role in obtaining Ohmic contact. A low specific contact resistance of 1.1×10-5Ω·cm2was obtained when the Ni(50nm)/Nb(50nm) electrode was annealed at 1050°C. The Ohmic contact mechanism of Ni/Nb/4H-SiC was proposed.
Native oxide layer with thickness of about 1 nm was found easy to form on 6H-SiC surface during transporting from cleaning process to vacuum chambers, which was examined by x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The interface band bending was studied by synchrotron radiation photoelectron spectroscopy (SRPES). For the native-oxide/SiC surface, after Ni deposition, the binding energy of Si 2p red-shifted about 0.34 eV, which suggested the upward bending of the interface energy band. Therefore, the native oxide layer should be considered on the study of SiC devices because it may affect the electron transport properties significantly.
Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystal in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.