Interleukin 22 (IL-22), which acts as either a pro-inflammatory or anti-inflammatory cytokine in various disease models, is markedly upregulated in chronic liver diseases, including hepatitis B and C. In this report, we demonstrate a strong correlation between IL-22 expression in the liver with active, inflammatory human liver disease. To clarify the role of IL-22 upregulation in the pathogenesis of liver diseases, liver specific IL-22 transgenic (IL-22TG) mice, under the control of albumin promoter, were developed. Despite elevated IL-22 serum levels ranging from 4000 to 7000 pg/ml, IL-22TG mice developed normally without obvious adverse phenotypes or evidence of chronic inflammation except slightly thicker epidermis and minor inflammation in the skin compared with wild-type mice. Most interestingly, IL-22TG mice were completely resistant to Concanavalin A-induced T cell hepatitis with minimal effect on liver inflammation and had accelerated liver regeneration after partial hepatectomy. Although they did not spontaneously develop liver tumors, IL-22TG mice were more susceptible to diethylnitrosamine-induced liver cancer. Microarray analyses revealed that a variety of anti-oxidant, mitogenic, acute phase genes were upregulated in the livers from IL-22TG mice compared with those from wild-type mice. These findings indicate that localized production of IL-22 in the liver promotes hepatocyte survival and proliferation but primes the liver to be more susceptible to tumor development without significantly affecting liver inflammation.
BACKGROUND & AIMS Obesity-related insulin resistance contributes to cardiovascular disease. Cannabinoid receptor-1 (CB1) blockade improves insulin sensitivity in obese animals and people, suggesting endocannabinoid involvement. We explored the role of hepatic CB1 in insulin resistance and inhibition of insulin signaling pathways. METHODS Wild-type mice and mice with disruption of CB1 (CB1−/− mice) or with hepatocyte-specific deletion or transgenic overexpression of CB1 were maintained on regular chow or a high-fat diet (HFD) to induce obesity and insulin resistance. Hyperinsulinemic-euglycemic clamp analysis was used to analyze the role of the liver and hepatic CB1 in HFD-induced insulin resistance. The cellular mechanisms of insulin resistance were analyzed in mouse and human isolated hepatocytes using small interfering or short hairpin RNAs and lentiviral knockdown of gene expression. RESULTS The HFD induced hepatic insulin resistance in wild-type mice, but not in CB1−/− mice or mice with hepatocyte-specific deletion of CB1. CB1−/− mice that overexpressed CB1 specifically in hepatocytes became hyperinsulinemic as a result of reduced insulin clearance due to down-regulation of the insulin-degrading enzyme. However, they had increased hepatic glucose production due to increased glycogenolysis, indicating hepatic insulin resistance; this was further increased by the HFD. In mice with hepatocytes that express CB1, the HFD or CB1 activation induced the endoplasmic reticulum stress response via activation of the Bip-PERK-eIF2α protein translation pathway. In hepatocytes isolated from human or mouse liver, CB1 activation caused endoplasmic reticulum stress-dependent suppression of insulin-induced phosphorylation of akt-2 via phosphorylation of IRS1 at serine-307 and by inducing the expression of the serine and threonine phosphatase Phlpp1. Expression of CB1 was up-regulated in samples from patients with nonalcoholic fatty liver disease. CONCLUSIONS Endocannabinoids contribute to diet-induced insulin resistance in mice via hepatic CB1-mediated inhibition of insulin signaling and clearance.
Background and Aims Aging is known to exacerbate the progression of alcoholic liver disease (ALD), but the underlying mechanisms remain obscure. Methods C57BL/6 mice were subjected to short-term (10-days) ethanol-plus-one binge or long- term (8-weeks) ethanol-plus-multiple binges of ethanol. Liver injury and fibrosis were determined. Hepatic stellate cells (HSCs) were isolated and used in in vitro studies. Results Compared to young (8–12 weeks) mice, middle-aged (12–14 months) and old (>16 months) mice were more susceptible to liver injury, inflammation, and oxidative stress induced by short-term-plus-one binge or long-term-plus-multiple binges of ethanol feeding. Long-term-plus- multiple binges of ethanol feeding induced greater liver fibrosis in middle-aged mice than that in young mice. Hepatic expression of Sirtuin 1 (SIRT1) protein was downregulated in the middle-aged mice compared to young mice. Restoration of SIRT1 expression via the administration of adenovirus-SIRT1 vector ameliorated short-term-plus-binge ethanol-induced liver injury and fibrosis in middle-aged mice. HSCs isolated from middle-aged mice expressed lower levels of SIRT1 protein and were more susceptible to spontaneous activation in in vitro culture than those from young mice. Overexpression of SIRT1 reduced activation of HSCs from middle-aged mice in vitro with downregulation of PDGFR-α and c-Myc, while deletion of SIRT1 activated HSCs isolated from young mice in vitro. Finally, HSC-specific SIRT1 knockout mice were more susceptible to short-term-plus-binge ethanol-induced liver fibrosis with upregulation of PDGFR-α expression. Conclusions Aging exacerbates ALD in mice through the downregulation of SIRT1 in hepatocytes and HSCs. Activation of SIRT1 may serve as a novel target for the treatment of ALD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.