Lennox-Gastaut syndrome (LGS) is a devastating and refractory generalized epilepsy affecting children and adolescents. In this study we report the results of resective surgery in 18 patients with LGS phenotype who underwent single-lobe/lesionectomy or multilobe resection plus multiple subpial transection and/or callosotomy. After surgery, seven patients became completely seizure-free (Engel Class I) and five almost seizure-free (Engel Class II). Additional four had significant seizure control (Engel Class III), and two had no change in seizure frequency (Engel Class IV). Of the 4 patients without any lesion on brain MRI, 2 ended with Engel Class II, 1 with III and the other with IV in Engels' classification. Mean intelligence quotient (IQ) increased from 56.1 ± 8.1 (mean ± SD) before operation to 67.4 ± 8.2 (mean ± SD) after operation, a significant improvement (P = 0.001). Results also indicated that the younger the patient at surgery, or the shorter the interval between onset of seizure and resective operation, the better the intellectual outcome. Our data suggest that resective epilepsy surgery can be successful in patients with LGS phenotype as long as the EEG shows dominance of discharges in one hemisphere and corresponding ipsilateral imaging findings, even with contralateral ictal discharges.
Mutations in RNA-binding Fox 1 (RBFOX1) are known to be associated with neurodevelopmental disorders including epilepsy, mental retardation and autism spectrum disorder. The deletion of the Rbfox1 gene in mice has been shown to result in heightened susceptibility to seizures. However, other studies have revealed mutations or the downregulation of RBFOX1 in specimens obtained from patients with epilepsy or malformations of cortical development (MCD). Generally, the expression of RBFOX1 varies according to tissue type. In this study, we demonstrated the upregulation of RBFOX1 protein in the cortex of patients with MCD and intractable epilepsy. Electrophysiological recordings of cultured rat cortical neurons with increased Rbfox1 expression also revealed a significantly increased amplitude of action potential (AP) and Na+ current density. Some of these neurons (26.32%) even displayed spontaneous, recurrent, epileptiform discharges (SREDs). Additionally, certain Rbfox1 target transcripts associated with epilepsy, including glutamate receptor, ionotropic, N-methyl D-aspartate 1 [Grin1, also known as N-methyl-D-aspartate receptor subunit NR1 (NMDAR1)], synaptosomal-associated protein, 25 kDa (SNAP-25 or Snap25) and sodium channel, voltage gated, type VIII, alpha subunit (Scn8a, also known as Nav1.6) were identified to be upregulated in these cultured cortical neurons with an upregulated Rbfox1 expression. These data suggest that the upregulation of RBFOX1 contributes to neuronal hyperexcitation and seizures. The upregulation of NMDAR1 (Grin1), SNAP-25 (Snap25) and Scn8a may thus be involved in Rbfox1-related neuronal hyperexcitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.