Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure–activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.
A high concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for cardiovascular disease. Although LDL-C levels vary among humans and are heritable, the genetic factors affecting LDL-C are not fully characterized. We identified a rare frameshift variant in the (also known as or ) gene from a Chinese family of Kazakh ethnicity with inherited low LDL-C and reduced cholesterol absorption. In a mouse model, LIMA1 was mainly expressed in the small intestine and localized on the brush border membrane. LIMA1 bridged NPC1L1, an essential protein for cholesterol absorption, to a transportation complex containing myosin Vb and facilitated cholesterol uptake. Similar to the human phenotype,-deficient mice displayed reduced cholesterol absorption and were resistant to diet-induced hypercholesterolemia. Through our study of both mice and humans, we identify LIMA1 as a key protein regulating intestinal cholesterol absorption.
Aberrant Wnt/β-catenin signaling has been strongly associated with the tumorigenesis of human colorectal cancer. Inhibitors of this pathway may then offer therapeutic strategies as well as chemoprevention for this malignant disease. Henryin is an ent-kaurane diterpenoid isolated from
Isodon
rubescens
var.
lushanensis
, a plant long been used in folk medicine to prevent inflammation and gastrointestinal disease. In the present study, we report that henryin selectively inhibits the proliferation of human colorectal cancer cells with a GI50 value in the nano-molar range. Microarray analysis and reporter assays showed that henryin worked as a novel antagonist of Wnt signaling pathway. Henryin reduced the expression of Cyclin D1 and C-myc, and induced G1/S phase arrest in HCT116 cells. Concurrently, henryin did not affect the cytosol-nuclear distribution of soluble β-catenin, but impaired the association of β-catenin/TCF4 transcriptional complex likely through directly blocking the binding of β-catenin to TCF4. We also then analyzed the structure-activity relationship among the ent-kaurane type diterpenoids. Our data suggests that henryin, as a novel inhibitor of Wnt signaling, could be a potential candidate for further preclinical evaluation for colon cancer treatment, and as such warrants further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.