Climate change is a global phenomenon but is modified by regional and local environmental conditions. Moreover, climate change exhibits remarkable cyclical oscillations and disturbances, which often mask and distort the long-term trends of climate change we would like to identify. Inspired by recent advancements in data mining, we experimented with empirical mode decomposition (EMD) technique to extract long-term change trends from climate data. We applied GIS elevation model to construct 3D EMD trend surface to visualize spatial variations of climate change over regions and biomes. We then computed various time-series similarity measures and plot them to examine spatial patterns across meteorological stations. We conducted a case study in Inner Mongolia based on daily records of precipitation and temperature at 45 meteorological stations from 1959 to 2010. The EMD curves effectively illustrated the long-term trends of climate change. The EMD 3D surfaces revealed regional variations of climate change, while the EMD similarity plots disclosed cross-station deviations. In brief, the change trends of temperature were significantly different from those of precipitation. Noticeable regional patterns and local disturbances of the changes in both temperature and precipitation were identified. The trends of change were modified by regional and local topographies and land covers.
Knowledge discovery about people and cities from emerging location data has been an active research field but is still relatively unexplored. In recent years, a considerable amount of work has been developed around the use of social media data, most of which focusses on mining the content, with comparatively less attention given to the location information. Furthermore, what aggregated scale spatial patterns show still needs extensive discussion. This paper proposes a tweet-topic-function-structure framework to reveal spatial patterns from individual tweets at aggregated spatial levels, combining an unsupervised learning algorithm with spatial measures. Two-year geo-tweets collected in Greater London were analyzed as a demonstrator of the framework and as a case study. The results indicate, at a disaggregated level, that the distribution of topics possess a fair degree of spatial randomness related to tweeting behavior. When aggregating tweets by zones, the areas with the same topics form spatial clusters but of entangled urban functions. Furthermore, hierarchical clustering generates a clear spatial structure with orders of centers. Our work demonstrates that although uncertainties exist, geo-tweets should still be a useful resource for informing spatial planning, especially for the strategic planning of economic clusters.
The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them.First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.