DFT/B3LYP/6-311G+(d,p) basis set including solvent effect was first used to calculate a set of molecular descriptors of 55 phenylalkylamine and 20 tryptamine compounds with hallucinogenic activity. Four quantitative structure-activity relationship (QSAR) models of the hallucinogenic activity for phenylalkylamines and tryptamines were obtained by employing multiple linear regression (MLR) method. The QSAR analysis indicated that electron-related descriptors were major contributors to the hallucinogenic activities of phenylalkylamines and tryptamines. In addition, electron-unrelated descriptors have some impact on the hallucinogenic activities of phenylalkylamines. Based on the results of QSAR study, a novel Conformation Complementary Judgement, Transformation and Induction (CCJTI) model had been proposed to explain different action mechanisms of phenylalkylamines and tryptamines with their target receptors. It was concluded that phenylalkylamines might combine with receptor by electronic effect, but steric factor could affect it also, whereas tryptamines could act only through the electronic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.