Nanoparticles were added to improve the tribological performance of the biopolymer-based composite films. Aluminum and alumina were used as additives. The matrix of the composite was MoS2/hydroxypropyl methylcellulose (HPMC). The ternary additive/MoS2/HPMC hybrid composites were successfully prepared via solvent evaporation. The surface morphology, thickness, microstructure, and wear scars were analyzed using scanning electron microscopy. X-ray diffraction was used to analyze the crystal structures of the nanoparticles in the composite films. Finally, a wear test was conducted to determine the tribology behavior and was discussed using the third-body theory. Because of the high surface-area-to-volume ratio of the additives, nanoparticles were exposed and densely distributed on the composite surface. Disclosed nanoparticles caused peaks and valleys and showed more significant undulations, prompting a highly rough surface. The addition of nanoparticles enhanced the load capacity of the composite films by 155%. In the meantime, nanoparticle additives significantly reduced the coefficient of friction by 50% and improved anti-wear performance by five times. The nanoparticles in the wear scar exhibited an excellent third-body mechanism during the wear process, coordinating the velocity accommodation mode between the two rubbing surfaces and the transfer load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.