We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium.
We report passive harmonic mode locking of a soliton Yb fiber laser at repetition rates continuously scalable up to 1.5 GHz. The laser generates transform-limited 500 fs pulses, with pulse energies of 30-100 pJ. At the 31st harmonic (1.3 GHz), the cavity supermodes are suppressed by 35 dB, and the pulse-to-pulse timing jitter is 6 ps.
We propose and demonstrate a new approach, to the best of our knowledge, for avoiding nonlinear effects in the amplification of ultrashort optical pulses. The initial pulse is divided longitudinally into a sequence of lower-energy pulses that are otherwise identical to the original, except for the polarization. The low-intensity pulses are amplified and then recombined to create a final intense pulse. This divided-pulse amplification complements techniques based on dispersion management.
We demonstrate soliton self-frequency shift of more than 12% of the optical frequency in a higher-order mode solid, silica-based fiber below 1300nm. This new class of fiber shows great promise for supporting Raman-shifted solitons below 1300nm in intermediate energy regimes of 1 to 10nJ that cannot be reached by index-guided photonic crystal fibers or air-core photonic bandgap fibers. By changing the input pulse energy of 200fs pulses from 1.36 to 1.63nJ we observe Raman-shifted solitons between 1064 and 1200nm with up to 57% power conversion efficiency and compressed output pulse widths less than 50fs. Furthermore, due to the dispersion characteristics of the HOM fiber, we observe redshifted Cerenkov radiation in the normal dispersion regime for appropriately energetic input pulses.
We report on a simple and robust technique to temporally shape ultrashort pulses. A number of birefringent crystals with appropriate crystal length and orientation form a crystal set. When a short pulse propagates through the crystal set, the pulse is divided into numerous pulses, producing a desired temporal shape. Flexibility in the final pulse shape is achieved through varying initial pulse duration, divided-pulse number, the polarization-mode delay, and energy distribution of the divided pulses. The energy efficiency of the technique is near 100% for a pulse train of alternating polarizations, and 50% for a linearly polarized pulse train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.