A series of vanadyl complexes bearing 3-tbutyl-5-bromo, 3-aryl-5-bromo, 3,5-dihalo-, and benzofused N-salicylidene-tert-leucinates was examined as catalysts for 1,2-alkoxy-phosphinoylation of 4-, 3-, 3,4-, and 3,5-substituted styrene derivatives (including Me/t-Bu, Ph, OR, Cl/Br, OAc, NO 2 , C(O)Me, CO 2 Me, CN, and benzo-fused) with HP(O)Ph 2 in the presence of t-BuOOH (TBHP) in a given alcohol or cosolvent with MeOH. The best scenario involved the use of 5 mol % 3-(2,5-dimethylphenyl)-5-Br (i.e., 3-DMP-5-Br) catalyst at 0 °C in MeOH. The desired catalytic cross coupling reactions proceeded smoothly with enantioselectivities of up to 95 % ee of (R)-configuration as confirmed by X-ray crystallographic analysis of several recrystallized products. The origin of enantiocontrol and homolytic substitution of the benzylic intermediates by vanadylbound methoxide and radical type catalytic mechanism were proposed.
Several 2-substituted (H, Ph, and S-Me) and 1-substituted (H, Ph, and Bn), 3-hydroxy-1,3-quinazolin(di)ones were utilized for the first time as radical trapping agents in asymmetric 1,2-oxytrifluoromethylation of styrenes catalyzed by chiral vanadyl methoxide complexes bearing 3,5-disubstituted-N-salicylidene-t-leucinate templates. The effects of catalysts and solvents on the asymmetric induction were systematically examined. The best and complementary scenarios involved the use of vanadyl complexes V(O)-1 and V(O)-2, which bear 3-(2,5-dimethyl)phenyl-5-bromophenyl and 3-t-butyl-5-bromophenyl groups in an i-propanol solvent at ambient temperature. The corresponding (R)-cross-coupling products by V(O)-1 were obtained in 45–71% (for 2-substituted series) and 59–93% yields (for 1-substituted series) for p-/m-methylstyrenes and m-halo/CF3/CO2Me-styrenes in 38–63% ees (the best in 2-H case) and 60–84% ees (the best in 1-benzyl cases), respectively. The corresponding (S)-cross-coupling products by V(O)-2 were obtained in 28–55% (for 2-substituted series) and 45–72% yields (for 1-substituted series) for the same substrate class in 50–91% ees (85–91% ees in 2-phenyl cases) and 64–75% ees (up to 74–75% ees for each 1-H, Ph, and Bn cases), respectively. Theoretical calculations were carried out to explain the origin and extent of enantiocontrols. They both may serve as potential inhibitors of acetohydroxyacid synthase and epidermal growth factor receptor (EGFR) kinases.
A series of vanadyl complexes bearing 3-tbutyl-5-bromo, 3-aryl-5-bromo, 3,5-dihalo-, and benzofused N-salicylidene-tert-leucinates was examined as catalysts for 1,2-alkoxy-phosphinoylation of 4-, 3-, 3,4-, and 3,5-substituted styrene derivatives (including Me/t-Bu, Ph, OR, Cl/Br, OAc, NO 2 , C(O)Me, CO 2 Me, CN, and benzo-fused) with HP(O)Ph 2 in the presence of t-BuOOH (TBHP) in a given alcohol or cosolvent with MeOH. The best scenario involved the use of 5 mol % 3-(2,5-dimethylphenyl)-5-Br (i.e., 3-DMP-5-Br) catalyst at 0 °C in MeOH. The desired catalytic cross coupling reactions proceeded smoothly with enantioselectivities of up to 95 % ee of (R)-configuration as confirmed by X-ray crystallographic analysis of several recrystallized products. The origin of enantiocontrol and homolytic substitution of the benzylic intermediates by vanadylbound methoxide and radical type catalytic mechanism were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.