Multiparameter flow cytometry was applied on normal human bone marrow (BM) cells to study the lineage commitment of progenitor cells ie, CD34+ cells. Lineage commitment of the CD34+ cells into the erythroid lineage was assessed by the coexpression of high levels of the CD71 antigen, the myeloid lineage by coexpression of the CD33 antigen and the B-lymphoid lineage by the CD10 antigen. Three color immunofluorescence experiments showed that all CD34+ BM cells that expressed the CD71, CD33, and CD10 antigens, concurrently stained brightly with anti-CD38 monoclonal antibodies (MoAbs). In addition, the CD38 antigen was brightly expressed on early T lymphocytes in human thymus, characterized by CD34, CD5, and CD7 expression. Only 1% of the CD34+ cells, 0.01% of nucleated cells in normal BM, did not express the CD38 antigen. The CD34+, CD38- cell population lacked differentiation markers and were homogeneous primitive blast cells by morphology. In contrast the CD34+, CD38 bright cell populations were heterogeneous in morphology and contained myeloblasts and erythroblasts, as well as lymphoblasts. These features are in agreement with properties expected from putative pluripotent hematopoietic stem cells; indeed, the CD34 antigen density decreased concurrently with increasing CD38 antigen density suggesting an upregulation of the CD38 antigen on differentiation of the CD34+ cells. Further evidence for a strong enrichment of early hematopoietic precursors in the CD34+, CD38- cell fraction was obtained from culture experiments in which CD34+ cell fractions with increasing density of the CD38 antigen were sorted singularly and assayed for blast colony formation. On day 14 of incubation, interleukin-3 (IL-3), IL-6, and GM-CSF, G-CSF, and erythropoietin (Epo) were added in each well. Twenty-five percent of the single sorted cells that expressed CD34 but lacked CD38 antigen gave rise to primitive colonies 28 to 34 days after cell sorting. The ability to form primitive colonies decreased rapidly with increasing density of the CD38 antigen. During 120 days of culture, up to five sequential generations of colonies were obtained after replating of the first-generation primitive colonies. This study provides direct evidence for the existence of a single class of progenitors with extensive proliferative capacity in human BM and provides an experimental approach for their purification, manipulation, and further characterization.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily, which utilize BMP receptors and intracellular SMADs to transduce their signals to regulate cell differentiation, proliferation, and apoptosis. Because mutations in BMP receptor type IA (BMPRIA) and SMAD4 are found in the germline of patients with the colon cancer predisposition syndrome juvenile polyposis, and because the contribution of BMP in colon cancers is largely unknown, we examined colon cancer cells and tissues for evidence of BMP signaling and determined its growth effects. We determined the presence and functionality of BMPR1A by examining BMP-induced phosphorylation and nuclear translocation of SMAD1; transcriptional activity via a BMP-specific luciferase reporter; and growth characteristics by cell cycle analysis, cell growth, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolic assays. These assays were also performed after transfection with a dominant negative (DN) BMPR1A construct. In SMAD4-null SW480 cells, we examined BMP effects on cellular wound assays as well as BMP-induced transcription in the presence of transfected SMAD4. We also determined the expression of BMPR1A, BMP ligands, and phospho-SMAD1 in primary human colon cancer specimens. We found intact BMP signaling and modest growth suppression in HCT116 and two derivative cell lines and, surprisingly, growth suppression in SMAD4-null SW480 cells. BMP-induced SMAD signaling and BMPR1A-mediated growth suppression were reversed with DN BMPR1A transfection. BMP2 slowed wound closure, and transfection of SMAD4 into SW480 cells did not change BMP-specific transcriptional activity over controls due to receptor stimulation by endogenously produced ligand. We found no cell cycle alterations with BMP treatment in the HCT116 and derivative cell lines, but there was an increased G1 fraction in SW480 cells that was not due to increased p21 transcription. In human colon cancer specimens, BMP2 and BMP7 ligands, BMPRIA, and phospho-SMAD1 were expressed. In conclusion, BMP signaling is intact and growth suppressive in human colon cancer cells. In addition to SMADs, BMP may utilize SMAD4-independent pathways for growth suppression in colon cancers.
Haematopoietic stem cells are a population of cells capable both of self renewal and of differentiation into a variety of haematopoietic lineages. Enrichment techniques of human haematopoietic stem cells have used the expression of CD34, present on bone marrow progenitor cells. But most CD34+ bone marrow cells are committed to their lineage, and more recent efforts have focused on the precise characterization of the pluripotent subset of CD34+ cells. Here we report the characterization of two distinct subsets of pluripotent stem cells from human fetal bone marrow, a CD34+, HLA-DR+, CD38- subset that can differentiate into all haematopoietic lineages, and a distinct more primitive subset, that is CD34+, HLA-DR-, CD38-, that can differentiate into haematopoietic precursors and stromal cells capable of supporting the differentiation of these precursors. These data represent, to our knowledge, the first identification of a single cell capable of reconstituting the haematopoietic cells and their associated bone marrow microenvironment.
Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFβ family receptors is abrogated in DNA Mismatch repair (MMR)-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1−/−, hMSH6−/−, hMSH3−/−, and MMR-proficient) to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP) gene, allowing a −1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7–35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a −1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2) in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes) and M2 (bright, representing full mutants) were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91×10−4) and 15 (2.18×10−4) times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was ∼3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The −1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background.
We have developed a time-lapse camera system to follow the replication history and the fate of hematopoietic stem cells (HSC) at a single-cell level. Combined with single-cell culture, we correlated the early replication behavior with colony development after 14 days. The membrane dye PKH26 was used to monitor cell division. In addition to multiple, synchronous, and symmetric divisions, single-sorted CD34+/CD38− cells derived from fetal liver (FLV) also gave rise to a daughter cell that remained quiescent for up to 8 days, whereas the other daughter cell proliferated exponentially. Upon separation and replating as single cells onto medium containing a cytokine cocktail, 60.6% ± 9.8% of the initially quiescent cells (PKH26 bright) gave rise again to colonies and 15.8% ± 7.8% to blast colonies that could be replated. We have then determined the effects of various regulatory molecules on symmetry of initial cell divisions. After single-cell sorting, the CD34+/CD38− cells derived from FLV were exposed to flt3-ligand, thrombopoietin, stem cell factor (SCF), or medium containing a cytokine cocktail (with SCF, interleukin-3, interleukin-6, granulocyte-macrophage colony-stimulating factor, and erythropoietin). Whereas mitotic rate, colony efficiency, and asymmetric divisions could be altered using various regulatory molecules, the asymmetric division index, defined as the number of asymmetric divisions versus the number of dividing cells, was not altered significantly. This observation suggests that, although lineage commitment and cell proliferation can be skewed by extrinsic signaling, symmetry of early divisions is probably under the control of intrinsic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.