Levels of lysophosphatidic acid (LPA) and lysophosphatidylcholine (LPC) are elevated in the plasma and ascites of ovarian cancer patients, but not in most other tumor types. LPA increases cell proliferation, cell survival, resistance to cisplatin, cell shrinkage, and production of vascular endothelial growth factor, urokinase plasminogen activator, and LPA itself in ovarian cancer cells, but not in normal ovarian surface epithelial cells. PSP24 and members of the endothelial differentiation gene (EDG) family (EDG1, EDG2, EDG4, and EDG7) of G protein‐coupled receptors mediate LPA signaling. Ovarian cancer cell lines do not express EDG1 mRNA, have variable EDG2 mRNA and protein levels, and frequently exhibit elevated levels of EDG4 mRNA and protein, suggesting that EDG4 may contribute to the deleterious effects of LPA in ovarian cancer. In contrast, activation of the EDG2 LPA receptor on ovarian cancer cells may lead to apoptosis and counter the effects of other LPA receptors. Thus, the development of agonists and antagonists for the appropriate spectrum of LPA receptors may alter proliferation, apoptosis, or response to therapy of ovarian cancer cells. Indeed, over 60% of all current drugs target the G protein‐coupled family of receptors, making the LPA receptor family a “drugable” target. LPC, although not as thoroughly studied, increases cellular proliferation and mediates multiple other functions through unique signaling pathways.
The Y-box binding protein-1 (YB-1) transcription factor is associated with unfavorable clinical outcomes. However, the mechanisms underlying this association remain to be fully elucidated. We demonstrate that YB-1 phosphorylation, indicative of YB-1 activation, is a powerful marker of outcomes for ovarian cancer patients. In ovarian cancer, YB-1 phosphorylation is induced by activation of the lysophosphatidic acid (LPA) receptor (LPAR) via SRC-dependent transactivation of the epidermal growth factor receptor (EGFR) that is coupled to MAPK/p90 ribosomal S6 kinase (p90RSK), but not phosphatidylinositol 3-kinase (PI3K)/AKT signaling. Activation of the LPAR/SRC/EGFR/MAPK/p90RSK/YB-1 axis leads to production of the EGFR ligand amphiregulin (AREG). AREG induces ongoing YB-1 phosphorylation as well as YB-1-dependent AREG expression thus constituting an AREG/YB-1 self-reinforcing loop. Disruption of transactivation of the EGFR and the downstream self-reinforcing loop decreases invasiveness of ovarian cancer cells in vitro and limits ovarian cancer growth in xenograft models. These findings established the regulation and significance of YB-1 phosphorylation, therefore further exploration of this signaling axis as a therapeutic avenue in ovarian cancer is warranted.
Background: Diazoxide is a selective mitochondrial-sensitive potassium channel opening agent that has a definite effect on reducing myocardial ischemia/reperfusion injury (MIRI). However, the exact effects of diazoxide postconditioning on the myocardial metabolome remain unclear, which might contribute to the cardioprotective effects of diazoxide postconditioning.Methods: Rat hearts subjected to Langendorff perfusion were randomly assigned to the normal (Nor) group, ischemia/reperfusion (I/R) group, diazoxide (DZ) group and 5-hydroxydecanoic acid + diazoxide (5-HD + DZ) group. The heart rate (HR), left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and maximum left ventricular pressure (+dp/dtmax) were recorded. The mitochondrial Flameng scores were analysed according to the ultrastructure of the ventricular myocardial tissue in the electron microscopy images. Rat hearts of each group were used to investigate the possible metabolic changes relevant to MIRI and diazoxide postconditioning.Results: The cardiac function indices in the Nor group were better than those in the other groups at the end point of reperfusion, and the HR, LVDP and +dp/dtmax of the Nor group at T2 were significantly higher than those of the other groups. Diazoxide postconditioning significantly improved cardiac function after ischaemic injury, and the HR, LVDP and +dp/dtmax of the DZ group at T2 were significantly higher than those of the I/R group, which could be abolished by 5-HD. The HR, LVDP and +dp/dtmax of the 5-HD + DZ group at T2 were significantly lower than those of the DZ group. The myocardial tissue in the Nor group was mostly intact, while it exhibited considerable damage in the I/R group. The ultrastructural integrity of the myocardium in the DZ group was higher than that in the I/R and 5-HD + DZ groups. The mitochondrial Flameng score in the Nor group was lower than that in the I/R, DZ and 5-HD + DZ groups. The mitochondrial Flameng score in the DZ group was lower than that in the I/R and 5-HD + DZ groups. Five metabolites, namely, L-glutamic acid, L-threonine, citric acid, succinate, and nicotinic acid, were suggested to be associated with the protective effects of diazoxide postconditioning on MIRI.Conclusion: Diazoxide postconditioning may improve MIRI via certain metabolic changes. This study provides resource data for future studies on metabolism relevant to diazoxide postconditioning and MIRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.