ABSTRACT:The recent upsurge in the demand of PV systems is due to the fact that they produce electric power without hampering the environment by directly converting the solar radiation into electric power. However the solar radiation never remains constant. It keeps on varying throughout the day. The need of the hour is to deliver a constant voltage to the grid irrespective of the variation in temperatures and solar insolation. In this paper I have designed a circuit such that it delivers constant and stepped up dc voltage to the load. I have studied the open loop characteristics of the PV array with variation in temperature and irradiation levels. Then coupled the PV array with the buck boost converter in such a way that with variation in load, the varying input current and voltage to the converter follows the open circuit characteristic of the PV array closely. At various insolation levels, the load is varied and the corresponding variation in the input voltage and current to the boost converter is noted. It is noted that the changing input voltage and current follows the open circuit characteristics of the PV array closely. KEYWORDS:Photovoltaic, Buck-Boost, Maximum Power Point, Direct Current I.INTRODUCTIONThe Conventional sources of energy are rapidly depleting. Moreover the cost of energy is rising and therefore photovoltaic system is a promising alternative. They are abundant, pollution free, distributed throughout the earth and recyclable. The hindrance factor is its high installation cost and low conversion efficiency. Therefore our aim is to increase the efficiency and power output of the system. It is also required that constant voltage be supplied to the load irrespective of the variation in solar irradiance and temperature. PV arrays consist of parallel and series combination of PV cells that are used to generate electrical power depending upon the atmospheric conditions ( solar irradiation and temperature). So it is necessary to couple the PV array with a boost converter. Moreover our system is designed in such a way that with variation in load, the change in input voltage and power fed into the converter follows the open circuit characteristics of the PV array. Our system can be used to supply constant stepped up voltage to dc loads. Solar energy has been harnessed by humans since ancient times using a variety of technologies. Solar radiation, along with secondary solar-powered resources such as wave and wind power, hydro-electricity and biomass, account for most of the available non-conventional type of energy on earth. Only a small fraction of the available solar energy is used [13]. Solar powered electrical generation relies on photovoltaic system and heat engines. Solar energy's uses are limited only by human creativity. To harvest the solar energy, the most common way is to use photo voltaic panels which will receive photon energy from sun and convert to electrical energy. Solar technologies are broadly classified as either passive solar or active solar depending on the way they detain, conve...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.