To study the aseismic performance after the reinforcement of the mortise-tenon joints of folk houses with traditional Chuan-Dou style wood structure and their steel plate, test specimens of joints—two for Tou mortise-tenon joints, two for Ban mortise-tenon joints, and two for dovetail mortise-tenon joints—were fabricated out of hemlock, and steel plates were utilized to reinforce one of the joint specimens of each type on the middle part of the mortise-tenon joint. By carrying out pseudo-static tests on the joints and building ABAQUS numerical model; the position where the mortise-tenon joints were to be reinforced by the steel plates was optimized for a comparative analysis into the test results on reinforced and unreinforced mortise-tenon joints and the numerically simulated bending moment-turning angle hysteresis curve, skeleton curve, energy-dissipating capacity, and rigidity degeneration curves. The results showed the following: the pulling-out phenomenon of tenons was severe, and the aseismic performance of Tou tenons was superior to Ban tenons and dovetail tenons; reinforcing the middle part of mortise-tenon joints with steel plates could effectively reduce the pulling-out amount of joints and promote the aseismic performance of mortise-tenon joints but have an insignificant promotive effect for the bearing capacity of Tou mortise-tenon joints; the aseismic performance was improved significantly after the flat steel strip reinforced position was moved to the upper and lower ends of mortise-tenon joints, with the ultimate bearing capacities being 1.5∼2.4 times that on the middle part of flat steel strip reinforced joints.
To improve the seismic performance of Chinese traditional wood-structure houses, this paper proposes to strengthen their mortise and tenon joints by applying an innovative metal damper. According to the dimensions of the “Yikeyin” wood-structure houses in the Tonghai area of Yunnan Province, two groups of six samples of three types of mortise and tenon joints were manufactured, in which one group was mounted with dampers made of Q235 steels. Subsequently, a low-cycle repeated loading test was conducted to examine the overall behavior of these joints. Various characteristics of seismic performance indexes, such as the moment–rotation hysteresis curve, skeleton curve, stiffness degradation, energy dissipation capacity, residual amount of tenon and the removal before and after reinforcements of straight, penetrated and dovetail tenon joints were analyzed. The test results show that these tenons exhibit good deformation capacity, their hysteresis curves became fuller and their “pinch” effects were significantly reduced, all after their joints became strengthened, indicating that their joint slips were reduced during the loading processes and their residual amounts of tenon removals were under effective control. Compared with the blank group, the joint stiffness was substantially improved, and the increase in the reverse stiffness turned greater than that of the positive stiffness at each stage of loading, while the degradation curve of the whole joint stiffness became steeper. After mounting the dampers, the bearing capacity and energy dissipation of the joints were significantly improved, the equivalent viscous damping coefficients of the straight and penetrated tenon joints were increased, but that of the dovetail joint was slightly reduced. These study results can provide a reference for the reinforcement and protection of traditional wood-structure houses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.