The development of thermally stable bromobutyl rubbers has been a challenge in rubber chemistry and engineering. In this circumstance, 4,4 0 -bismaleimidodiphenylmethane (BMI) was newly applied as a novel crosslinking agent for thermally stable brominated isobutylene-isoprene rubber (BIIR) with a high crosslinking density. With oscillating disk rheometry and differential scanning calorimetry, the curing characteristics of BIIR were systematically investigated with respect to the content of BMI. We found that BMI alone could crosslink BIIR at higher temperature, and a corresponding possible chemical reaction mechanism was proposed. With the introduction of zinc oxide, the curing reaction of BIIR with BMI was significantly accelerated, and the resulting vulcanizate provided a higher state of curing with excellent overcure reversion stability even at a temperature of 190 8C for 2 h. The content of the dicumyl peroxide (DCP) reaction accelerator was also optimized to be BMI/DCP 5 1:0.05 on the basis of considerations of the curing rate, scorch safety, maximum rheometric torque, and reversion resistance at 160 8C. Compared with the conventional sulfurcured BIIR, the BMI-cured BIIR exhibited a higher crosslinking density with a superior low compression set property at elevated temperatures and an excellent thermal stability.
The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.
Flexible and stretchable electrodes have attracted immense attention because of their various electronic applications on the wearable sensing electronics, but challenges regarding robust and sustainable electrical performance under static and dynamic mechanical stresses still need to be overcome. Herein, with a simple effective strategy, a highly serviceable and flexible elastomeric electrode fabricated by utilizing an interpenetrating network between acrylic rubber (AR) and silicone rubber (SR), and silver (Ag) ink to increase electrical conductivity, is introduced. Oxygen (O2) plasma and sodium dodecyl sulfate (SDS) treatment on wrinkle substrate surface lead to robust adhesion of Ag ink layer, results in high electrical conductivity. Wrinkle morphology can help to stably maintain the continuous conductive Ag network during static and dynamic deformation. This stretchable electrode possessing properties such as robust and stable electrical conductivity of ~103 S/cm under 150% static tensile deformations and good sustainability after 1000 cycles of dynamic tensile deformations is a promising candidate for stretchable wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.