Background and Purpose Interleukin-4 (IL-4) is a unique cytokine that may contribute to brain repair by regulating microglia/macrophage functions. Thus, we examined the effect of IL-4 on long-term recovery and microglia/macrophage polarization in two well-established stroke models. Methods Transient middle cerebral artery occlusion (tMCAO) or permanent distal MCAO (dMCAO) was induced in wild-type (WT) and IL-4 knockout (KO) C57/BL6 mice. In a separate cohort of WT animals, IL-4 (60 ng/d for 7d) or vehicle was infused into the cerebroventricle after tMCAO. Behavioral outcomes were assessed by the Rotarod, corner, foot fault, and Morris water maze tests. Neuronal tissue loss was verified by two independent neuron markers. Markers of classically activated (M1) and alternatively activated (M2) microglia were assessed by RT-PCR, immunofluorescence, and flow cytometry. Results Loss of IL-4 exacerbated sensorimotor deficits and impaired cognitive functions up to 21d post-injury. In contrast to the delayed deterioration of neurological functions, IL-4 deficiency increased neuronal tissue loss only in the acute phase (5d) after stroke and had no impact on neuronal tissue loss 14d or 21d post-injury. Loss of IL-4 promoted expression of M1 microglia/macrophage markers and impaired expression of M2 markers at 5d and 14d post-injury. Administration of IL-4 into the ischemic brain also enhanced long-term functional recovery. Conclusions The cytokine IL-4 improves long-term neurological outcomes after stroke, perhaps through M2 phenotype induction in microglia/macrophages. These results are the first to suggest that immunomodulation with IL-4 is a promising approach to promote long-term functional recovery after stroke.
We demonstrate a new approach to pattern transfer for bottom-up nanofabrication. We show that DNA promotes/inhibits the etching of SiO(2) at the single-molecule level, resulting in negative/positive tone pattern transfers from DNA to the SiO(2) substrate.
BackgroundFollowing stroke, microglia can be driven to the “classically activated” pro-inflammatory (M1) phenotype and the “alternatively activated” anti-inflammatory (M2) phenotype. Salidroside (SLDS) is known to inhibit inflammation and to possess protective effects in neurological diseases, but to date, the exact mechanisms involved in these processes after stroke have yet to be elucidated. The purpose of this study was to determine the effects of SLDS on neuroprotection and microglial polarization after stroke.MethodsMale adult C57/BL6 mice were subjected to focal transient cerebral ischemia followed by intravenous SLDS injection. The optimal dose was determined by evaluation of cerebral infarct volume and neurological functions. RT-PCR and immunostaining were performed to assess microglial polarization. A transwell system and a direct-contact coculture system were used to elucidate the effects of SLDS-induced microglial polarization on oligodendrocyte differentiation and neuronal survival.ResultsSLDS significantly reduced cerebral infarction and improved neurological function after cerebral ischemia. SLDS treatment reduced the expression of M1 microglia/macrophage markers and increased the expression of M2 microglia/macrophage markers after stroke and induced primary microglia from M1 phenotype to M2 phenotype. Furthermore, SLDS treatment enhanced microglial phagocytosis and suppressed microglial-derived inflammatory cytokine release. Cocultures of oligodendrocytes and SLDS-treated M1 microglia resulted in increased oligodendrocyte differentiation. Moreover, SLDS protected neurons against oxygen glucose deprivation by promoting microglial M2 polarization.ConclusionsThese data demonstrate that SLDS protects against cerebral ischemia by modulating microglial polarization. An understanding of the mechanisms involved in SLDS-mediated microglial polarization may lead to new therapeutic opportunities after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.