Nonreciprocal devices, such as isolators, are of great importance for optical communication and optical information processing. To bypass the limitation of a strong magnetic field imposed by the traditional Faraday magneto-optic effect, many alternative mechanisms have been proposed to demonstrate magnetic-free nonreciprocity. However, limited by the drive-induced noise, the noiseless isolator capable of working in the quantum regime has yet to be realized in the experiment. Here, we show a noiseless all-optical isolator with genuine single photons in hot atoms. We experimentally study this mechanism using an open V-type level scheme and demonstrate a low insertion loss of 0.6 dB and high isolation of 30.3 dB with bandwidth up to hundreds of megahertz. Furthermore, the nonreciprocal direction can be truly reversed only by tuning the frequency of the pump laser with the same setup. Our scheme relies on widely used optical technology and is thus universal and robust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.