Dimethyl sulfoxide (DMSO) is widely used in the chemical industry. However, it has a non-neglectful thermal runaway risk due to the nature of self-accelerating decomposition near the boiling point. Under the background that zinc oxide (ZnO) may extend the isothermal induction period of thermal decomposition of DMSO, this article conducts an in-depth study for the phenomenon with the techniques such as differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), gas chromatography−mass spectrometry (GC−MS), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometry (XRD). After being mixed with ZnO, the maximum decomposition rate of DMSO was significantly reduced and the adiabatic induction period of DMSO decomposition was extended by 3.27 times, indicating that the thermal decomposition intensity of DMSO was obviously reduced. It was experimentally demonstrated that ZnO did not change the decomposition pathways of DMSO, but it could promote the decomposition of methanethiol, which was a decomposition intermediate of DMSO and could potentially serve as a promoter on the decomposition of DMSO.
3-Amino-4-Amidoximinofurazan (AAOF) is an important precursor for synthesis of high energy furazan energetic materials. The traditional batchwise synthesis approach has the shortcomings of low productivity and high possibility of thermal...
Nitrophenols and corresponding sodium nitrophenolates are the main side products in the production of mononitrobenzene (MNB). These side products are hazardous due to their thermal instability nature. In this article, the thermal decomposition behaviors of nitrophenols and sodium nitrophenolates were first characterized by differential scanning calorimeter and accelerating rate calorimetry techniques. Then, the influence of phenol and sodium phenolate on the thermal decomposition of MNB was studied to clarify the effect of phenolic hydroxyl groups on the thermal stability of nitrophenols. It was found that compared to nitrophenols, the exothermic peaks of sodium nitrophenolates were more intense and presented strongly autocatalytic features. Sodium phenolate could significantly decrease the decomposition temperature of MNB. Aniline was detected as the unique product in the decomposition processes of pure MNB and MNB/sodium phenolate mixtures, and the nitrosobenzene was verified as the intermediate product. It was experimentally proven that sodium phenolate could catalyze the decomposition of nitrosobenzene (the decomposition intermediate of MNB). The violent decomposition of sodium nitrophenols was caused by the intermolecular catalysis effect of phenoxy groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.