Given the Loop-Quantum-Gravity (LQG) non-graph-changing Hamiltonian H[N ], the coherent state expectation value H[N ] admits an semiclassical expansion in 2 p . In this paper, we compute explicitly the expansion of H[N ] on the cubic graph to the linear order in 2 p , when the coherent state is peaked at the homogeneous and isotropic data of cosmology. In our computation, a powerful algorithm is developed to overcome the complexity in computing H[N ] . In particular, some key innovations in our algorithm substantially reduce the computational complexity in the Lorentzian part of H[N ] . In addition, some effects in cosmology from the quantum correction in H[N ] are discussed at the end of this paper.
Excessive mitochondrial fission plays a key role in podocyte injury in diabetic kidney disease (DKD), and long noncoding RNAs (lncRNAs) are important in the development and progression of DKD. However, lncRNA regulation of mitochondrial fission in podocytes is poorly understood. Here, we studied lncRNA maternally expressed gene 3 (Meg3) in mitochondrial fission in vivo and in vitro using human podocytes and Meg3 podocyte-specific knockdown mice. Expression of lncRNA Meg3 in STZ-induced diabetic mice was higher, and correlated with the number of podocytes. Excessive mitochondrial fission of podocytes and renal histopathological and physiological parameters were improved in podocyte-specific Meg3 knockdown diabetic mice. Elongated mitochondria with attenuated podocyte damage, as well as mitochondrial translocation of dynamin-related protein 1 (Drp1), were decreased in Meg3 knockout podocytes. By contrast, increased fragmented mitochondria, podocyte injury, and Drp1 expression and phosphorylation were observed in lncRNA Meg3-overexpressing podocytes. Treatment with Mdivi1 significantly blunted more fragmented mitochondria and reduced podocyte injury in lncRNA Meg3-overexpressing podocytes. Finally, fragmented mitochondria and Drp1 mitochondrial translocation induced by high glucose were reduced following treatment with Mdivi1. Our data show that expression of Meg3 in podocytes in both human cells and diabetic mice was higher, which regulates mitochondrial fission and contributes to podocyte injury through increased Drp1 and its translocation to mitochondria.
Proposed near-future upgrades of the current advanced interferometric gravitational wave detectors include the usage of frequency dependent squeezed light to reduce the current sensitivity-limiting quantum noise. We quantify and describe the degradation effects that spatial mode-mismatches between optical resonators have on the squeezed field. These mode-mismatches can to first order be described by scattering of light into second-order Gaussian modes. As a demonstration of principle, we also show that squeezing the second-order Hermite-Gaussian modes HG02 and HG20, in addition to the fundamental mode, has the potential to increase the robustness to spatial mode-mismatches. This scheme, however, requires independently optimised squeeze angles for each squeezed spatial mode, which would be challenging to realise in practise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.