Hyaluronan and proteoglycan link protein 3 (HAPLN3) is a member of the hyaluronan and proteoglycan link protein family expressed in the extracellular matrix closely associated with the development and occurrence of various malignant tumors; yet, its function in clear cell renal cell cancer (ccRCC) is still poorly understood. The following study investigated the progress and mechanism of HAPLN3 on ccRCC using bioinformatics analysis and in vitro experiments. In order to determine whether HAPLN3 is differentially expressed in ccRCC, we analyzed data from the Cancer Genome Atlas (TCGA) and GSE40435 and further validated them in the Human Protein Atlas (HPA) database. Simultaneously, the TCGA dataset was utilized to study the relationship between HAPLN3 expression and the progression of ccRCC and its prognostic value in ccRCC. Gene enrichment analysis (GSEA) was used to explore HAPLN3-related signaling pathways in ccRCC. The TIMER database investigates the link for both HAPLN3 and immune cell in ltration. Different ccRCC cell lines the role of HAPLN3 on cell biological behavior in vitro. HAPLN3 was increased in ccRCC, and its high expression was related to the patients' survival rates and clinical characteristics. GSEA showed that HAPLN3 is mainly enriched in proliferative and metastatic pathways. In addition, HAPLN3 was an independently associated signi cant predictor in patients with ccRCC. Functional experiments demonstrated that HAPLN3 could promote the proliferation, migration, and invasion of ccRCC cells through the ERK1/2 signaling pathway. To sum up, our data suggest that HAPLN3 may serve as a new prognostic biomarker and potential therapeutic target for ccRCC.
MLN4924 is a specific small-molecule inhibitor of NEDD8-activating enzyme (NAE) that blocks the neddylation modification cascade. Several I/II/III clinical trials suggested that MLN4924 exerts an antitumor effect against various malignancies. However, recent studies have also found that MLN4924 activates the PI3K/AKT and MAPK/ERK signal pathways, important regulators of tumorigenesis, and drug resistance in human urothelial carcinoma (UC). This study examined the synergistic effect of celecoxib, a cyclooxygenase-2 (COX-2) selective inhibitor, on MLN4924-induced cytotoxicity and epithelial–mesenchymal transition (EMT) inhibition via AKT and ERK pathways in human UC. We performed both in vitro and in vivo experiments. Briefly, a combination of MLN4924 and celecoxib reduced the protein expression of p-AKT(S473) and p-ERK in UC cell lines. Moreover, celecoxib shifted the half-maximal inhibitory concentration (IC50) curve of MLN4924 to the left, and the combinational effect of MLN4924 and celecoxib showed significant synergism in T24 and 5637 cells. Also, celecoxib enhanced the MLN4924 antitumor effects of inhibiting UC cell growth, colony formation, migration, invasion, and inducing apoptosis. In addition, celecoxib potentiated the MLN4924-induced EMT, decreased the expression of N-cadherin and vimentin, and activated the expression of E-cadherin. Celecoxib also increased the expression of pro-apoptosis proteins PARP and BAX and reduced the expression of antiapoptosis protein Bcl2. In vivo study indicated that the combination of MLN4924 and celecoxib synergistically suppressed the tumor growth in a UC xenograft nude-mice model, which was further supported by immunohistochemistry of tumor tissues. To sum up, our study revealed that celecoxib synergistically enhanced MLN4924-induced cytotoxicity and EMT inhibition in UC. It also inhibited the activation of AKT and ERK pathways, which were activated by MLN4924. These discoveries provide a new drug combination strategy for UC treatment.
Background Emerging evidence has shown that miR-1307-5p is involved in tumorigenesis of various types of cancer. This study aims to assess the role and mechanism of miR-1307-5p in bladder cancer. Methods Bioinformatics analyses were carried out with clinical datasets in the public domains. To investigate the cellular functions of miR-1307-5p, assays of cell proliferation, cell cycle and cell apoptosis were conducted in bladder cancer cell lines and xenografts. The molecular mechanisms of miR-1307-5p were studied using luciferase reporter, RT–qPCR, and western blotting analyses. Results We found that miR-1307-5p expression was significantly decreased in bladder cancer tissues, and its lower level was associated with poor prognosis. Cellular assays indicated the tumor-suppressor roles of miR-1307-5p were linked to cell proliferation, cell cycle inhibition, and cell apoptosis promotion. Conversely, anti-miR-1307-5p facilitated cell proliferation and cell cycle and antagonized cell apoptosis. In the in vivo setting, tumor growth was suppressed by miR-1307-5p overexpression. We found by bioinformatic and luciferase reporter assays that miR-1307-5p targets the 3′-UTR of MDM4, a well-known Inhibitor of TP53-mediated transactivation, cell cycle arrest and apoptosis. Specifically, miR-1307-5p markedly reduced MDM4 proteins expression, decreased the expression of Ki-67 and PCNA, and increased the expression of cleaved-caspase 3 and caspase 9. While in parallel assays, anti-miR-1307-5p had opposite effects. In addition, we found that miR-1307-5p overexpression would suppress bladder cancer cell growth by inhibiting MDM4 and its downstream Hippo pathway. Conclusion In bladder cancer, miR-1307-5p functions as a tumor suppressor and has the potentials as biomarker and therapeutical agent.
Background Emerging evidence has shown that miR-1307-5p is involved in tumorigenesis of various types of cancer. This study aims to assess the role and mechanism of miR-1307-5p in bladder cancer. Methods Bioinformatics analyses were carried out with clinical datasets in the public domains. To investigate the cellular functions of miR-1307-5p, assays of cell proliferation, cell cycle and cell apoptosis were conducted in bladder cancer cell lines and xenografts. The molecular mechanisms of miR-1307-5p were studied using luciferase reporter, RT-qPCR, and western blotting analyses. Results We found that miR-1307-5p expression was significantly decreased in bladder cancer tissues, and its lower level was associated with poor prognosis. Cellular assays demonstrated the tumor-suppressor roles of miR-1307-5p were linked to cell proliferation and cell cycle inhibition and cell apoptosis promotion. Conversely, anti-miR-1307-5p facilitated cell proliferation and cell cycle and antagonized cell apoptosis. In the in vivo setting, tumor growth was suppressed by miR-1307-5p overexpression. We determined by bioinformatic and luciferase reporter assays that miR-1307-5p targets the 3'-UTR of MDM4, a well-known Inhibitor of TP53-mediated transactivation, cell cycle arrest and apoptosis. Specifically, miR-1307-5p markedly reduced MDM4 proteins expression, decreased the expression of Ki-67 and PCNA, and increased the expression of cleaved-caspase 3 and caspase 9. While in parallel assays, anti-miR-1307-5p had opposite effects. In addition, we validated that miR-1307-5p overexpression would suppress bladder cancer cell growth by inhibiting MDM4 and its downstream Hippo pathway. Conclusion In bladder cancer, miR-1307-5p functions as a tumor suppressor and has the potentials as biomarker and therapeutical agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.