In this study, we examined wood anatomy, hydraulic properties, photosynthetic rate, and water status and osmotic regulation in three liana species and three tree species co-occurring in a seasonal tropical rain forest. Our results showed that the three liana species had larger vessel diameter, lower sapwood density, and consequently higher branch sapwood specific hydraulic conductivity (K S ) than the three tree species. Across species, K S was positively correlated with leaf nitrogen concentration and maximum net CO 2 assimilation rate. However, it was also positively correlated with xylem water potential at 50% loss of hydraulic conductivity, indicating a trade-off between hydraulic efficiency and safety. Compared to the tree species, the liana species had higher predawn leaf water potential and lower osmotic adjustment in the dry season. The combination of more efficient water transport, higher photosynthetic rates, and their ability to access to more reliable water source at deeper soil layers in the dry season in the lianas should contribute to their fast growth.
Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.
The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.