Tattoo-like epidermal sensors are an emerging class of truly wearable electronics, owing to their thinness and softness. While most of them are based on thin metal films, a silicon membrane, or nanoparticle-based printable inks, we report sub-micrometer thick, multimodal electronic tattoo sensors that are made of graphene. The graphene electronic tattoo (GET) is designed as filamentary serpentines and fabricated by a cost- and time-effective "wet transfer, dry patterning" method. It has a total thickness of 463 ± 30 nm, an optical transparency of ∼85%, and a stretchability of more than 40%. The GET can be directly laminated on human skin just like a temporary tattoo and can fully conform to the microscopic morphology of the surface of skin via just van der Waals forces. The open-mesh structure of the GET makes it breathable and its stiffness negligible. A bare GET is able to stay attached to skin for several hours without fracture or delamination. With liquid bandage coverage, a GET may stay functional on the skin for up to several days. As a dry electrode, GET-skin interface impedance is on par with medically used silver/silver-chloride (Ag/AgCl) gel electrodes, while offering superior comfort, mobility, and reliability. GET has been successfully applied to measure electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), skin temperature, and skin hydration.
Epidermal pH is an indication of the skin’s physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic non-healing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous monitoring of pH can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, we present pH-responsive hydrogel fibers that can be used for long-term monitoring of epidermal wound condition. We load pH-responsive dyes into mesoporous microparticles and incorporate them into hydrogel fibers developed through microfluidic spinning. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel based wound dressing with a wide range of sizes. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process.
Electrooculography (EOG) is a method to record the electrical potential between the cornea and the retina of human eyes. Despite many applications of EOG in both research and medical diagnosis for many decades, state-of-the-art EOG sensors are still bulky, stiff, and uncomfortable to wear. Since EOG has to be measured around the eye, a prominent area for appearance with delicate skin, mechanically and optically imperceptible EOG sensors are highly desirable. Here, we report an imperceptible EOG sensor system based on noninvasive graphene electronic tattoos (GET), which are ultrathin, ultrasoft, transparent, and breathable. The GET EOG sensors can be easily laminated around the eyes without using any adhesives and they impose no constraint on blinking or facial expressions. High-precision EOG with an angular resolution of 4°of eye movement can be recorded by the GET EOG and eye movement can be accurately interpreted. Imperceptible GET EOG sensors have been successfully applied for human-robot interface (HRI). To demonstrate the functionality of GET EOG sensors for HRI, we connected GET EOG sensors to a wireless transmitter attached to the collar such that we can use eyeball movements to wirelessly control a quadcopter in real time.
Electronic tattoos (e-tattoos), also known as epidermal electronics, are ultra-thin and ultra-soft noninvasive but skin-conformable devices with capabilities including physiological sensing and transdermal stimulation and therapeutics. The fabrication of e-tattoos out of conventional inorganic electronic materials used to be tedious and expensive. Recently developed cut-and-paste method has significantly simplified the process and lowered the cost. However, existing cut-and-paste method entails a medical tape on which the electronic tattoo sensors should be pasted, which increases tattoo thickness and degrades its breathability. To address this problem, here we report a slightly modified cut-and-paste method to fabricate low-cost, open-mesh e-tattoos with a total thickness of just 1.5 μm. E-tattoos of such thinness can be directly pasted on human skin and conforms to natural skin texture. We demonstrate that this ultra-thin, tape-free e-tattoo can confidently measure electrocardiogram (ECG), skin temperature, and skin hydration. Heart rate and even respiratory rate can be extracted from the ECG signals. A special advantage of such ultra-thin e-tattoo is that it is capable of high-fidelity sensing with minimized motion artifacts under various body movements. Effects of perspiration are found to be insignificant due to the breathability of such e-tattoos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.