To search for an economical and convenient synthesis of sunitinib and its malate salt, optimization of a scalable synthetic route was explored by designing a standard experimental protocol on laboratory scale using commercially available materials including acetyl ethyl acetate, 4-fluoroaniline, and N 1 ,N 1 -diethylethane-1,2-diamine. The optimal conditions were established based on investigating the main reaction steps, including cyclization, hydrolysis, decarboxylation, formylation, and condensation, giving optimized yields for each step of 94.4, 97.6, 98.5, 97.1, 91.0, 86.3, 85.5, 88.2, 99.1, 97.3, and 58.7 %, respectively. The synthesis process of 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid as the important intermediate was significantly improved by using solvent-free decarboxylation instead of the traditional process in a high-boiling-point solvent. The subsequent formylation was conducted directly using the dichloromethane solution of the crude product from decarboxylation, leading to an almost quantitative combined yield of these two steps. The overall yields of sunitinib and its salt using the optimal synthesis process were 67.3 and 40.0 % based on acetyl ethyl acetate. The obtained data could be used as reference for future industrialization, especially for avoiding expensive solvents and reducing reaction time.Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.