Traditional cable analyses cannot explain complex patterns of excitation in cardiac tissue with unipolar, extracellular anodal, or cathodal stimuli. Epifluorescence imaging of the transmembrane potential during and after stimulation of both refractory and excitable tissue shows distinctive regions of simultaneous depolarization and hyperpolarization during stimulation that act as virtual cathodes and anodes. The results confirm bidomain model predictions that the onset (make) of a stimulus induces propagation from the virtual cathode, whereas stimulus termination (break) induces it from the virtual anode. In make stimulation, the virtual anode can delay activation of the underlying tissue, whereas in break stimulation this occurs under the virtual cathode. Thus make and break stimulations in cardiac tissue have a common mechanism that is the result of differences in the electrical anisotropy of the intracellular and extracellular spaces and provides clear proof of the validity of the bidomain model.
Rationale
Fibrillation-defibrillation episodes in failing ventricles may be followed by action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (SVF).
Objective
We hypothesized that activation of apamin-sensitive small-conductance Ca2+-activated K+ (SK) channels are responsible for the postshock APD shortening in failing ventricles.
Methods and Results
A rabbit model of tachycardia-induced heart failure was used. Simultaneous optical mapping of intracellular Ca2+ and membrane potential (Vm) was performed in failing and non-failing ventricles. Three failing ventricles developed SVF (SVF group), 9 did not (no-SVF group). None of the 10 non-failing ventricles developed SVF. Increased pacing rate and duration augmented the magnitude of APD shortening. Apamin (1 μmol/L) eliminated recurrent SVF, increased postshock APD80 in SVF group from 126±5 ms to 153±4 ms (p<0.05), in no-SVF group from147±2 ms to 162±3 ms (p<0.05) but did not change of APD80 in non-failing group. Whole cell patch-clamp studies at 36°C showed that the apamin-sensitive K+ current (IKAS) density was significantly larger in the failing than in the normal ventricular epicardial myocytes, and epicardial IKAS density is significantly higher than midmyocardial and endocardial myocytes. Steady-state Ca2+ response of IKAS was leftward-shifted in the failing cells compared with the normal control cells, indicating increased Ca2+ sensitivity of IKAS in failing ventricles. The Kd was 232 ± 5 nM for failing myocytes and 553 ± 78 nM for normal myocytes (p = 0.002).
Conclusions
Heart failure heterogeneously increases the sensitivity of IKAS to intracellular Ca2+, leading to upregulation of IKAS, postshock APD shortening and recurrent SVF.
Topologic charge densities can be calculated easily and efficiently to reveal phase singularity behavior. However, the differences between theoretical and experimental observations of singularity separation distances indicate the need for more sophisticated numerical models.
VF during prolonged global ischemia is consistent with type 2 VF with a single subepicardial source of rapid activation, mostly near the interventricular septum. The DF in LV is not higher than in RV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.