Sodium (Na) metal as an anode is one of the ultimate choices for the high‐energy rechargeable batteries in virtue of its intrinsic high theoretical capacity (1166 mAh g−1) and low redox potential (−2.71V vs standard hydrogen electrode (SHE)), as well as its low cost and broad sources. Nevertheless, the dendrite‐related hazards seriously block its practical application. Na dendrite formation mainly emanates from the uncontrolled Na deposition behavior. Therefore, it seems particularly important to employ appropriate strategies towards the homogeneous deposition of Na for the dendrite‐free metal anode. In this review, the challenge of regulating Na homogeneous deposition for dendrite‐free Na anodes is first discussed. Then, recent advances in the strategies of regulating the Na uniform deposition are summarized, including adjusting Na+ flux near the solid‐liquid interface and improving sodiophilicity on the biphase interface. Lastly, perspectives on further research and important factors toward the practical application of high‐energy‐density Na metal batteries are emphasized in detail.
Carbonate electrolytes have excellent chemical stability and high salt solubility, which are ideally practical choice for achieving high-energy-density sodium (Na) metal battery at room temperature. However, their application at ultra-low temperature (À 40 °C) is adversely affected by the instability of solid electrolyte interphase (SEI) formed by electrolyte decomposition and the difficulty of desolvation. Here, we designed a novel low-temperature carbonate electrolyte by molecular engineering on solvation structure. The calculations and experimental results demonstrate that ethylene sulfate (ES) reduces the sodium ion desolvation energy and promotes the forming of more inorganic substances on the Na surface, which promote ion migration and inhibit dendrite growth. At À 40 °C, the Na j j Na symmetric battery exhibits a stable cycle of 1500 hours, and the Na j j Na 3 V 2 (PO 4 ) 3 (NVP) battery achieves 88.2 % capacity retention after 200 cycles.
Carbonate electrolytes have excellent chemical stability and high salt solubility, which are ideally practical choice for achieving high‐energy‐density sodium (Na) metal battery at room temperature. However, their application at ultra‐low temperature (−40 °C) is adversely affected by the instability of solid electrolyte interphase (SEI) formed by electrolyte decomposition and the difficulty of desolvation. Here, we designed a novel low‐temperature carbonate electrolyte by molecular engineering on solvation structure. The calculations and experimental results demonstrate that ethylene sulfate (ES) reduces the sodium ion desolvation energy and promotes the forming of more inorganic substances on the Na surface, which promote ion migration and inhibit dendrite growth. At −40 °C, the Na||Na symmetric battery exhibits a stable cycle of 1500 hours, and the Na||Na3V2(PO4)3 (NVP) battery achieves 88.2 % capacity retention after 200 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.