Neurodegenerative diseases, characterized by a progressive loss of brain function, affect the lives of millions of individuals worldwide. The complexity of the brain poses a challenge for scientists trying to map the biochemical and physiological pathways to identify areas of pathological errors. Brain samples of patients with neurodegenerative diseases have been shown to contain large amounts of misfolded and abnormally aggregated proteins, resulting in dysfunction in certain brain centers. Removal of these abnormal molecules is essential in maintaining protein homeostasis and overall neuronal health. Macroautophagy is a major route by which cells achieve this. Administration of certain autophagy-enhancing compounds has been shown to provide therapeutic effects for individuals with neurodegenerative conditions. SQSTM1/p62 is a scaffold protein closely involved in the macroautophagy process. p62 functions to anchor the ubiquitinated proteins to the autophagosome membrane, promoting degradation of unwanted molecules. Modulators targeting p62 to induce autophagy and promote its protective pathways for aggregate protein clearance have high potential in the treatment of these conditions. Additionally, causal relationships have been found between errors in regulation of SQSTM1/p62 and the development of a variety of neurodegenerative disorders, including Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, and frontotemporal lobar degeneration. Furthermore, SQSTM1/p62 also serves as a signaling hub for multiple pathways associated with neurodegeneration, providing a potential therapeutic target in the treatment of neurodegenerative diseases. However, rational design of a p62-oriented autophagy modulator that can balance the negative and positive functions of multiple domains in p62 requires further efforts in the exploration of the protein structure and pathological basis.
Tumor necrosis factor α (TNF-α) is overexpressed in various diseases, and it has been a validated therapeutic target for autoimmune diseases. All therapeutics currently used to target TNF-α are biomacromolecules, and limited numbers of TNF-α chemical inhibitors have been reported, which makes the identification of small-molecule alternatives an urgent need. Recent studies have mainly focused on identifying small molecules that directly bind to TNF-α or TNF receptor-1 (TNFR1), inhibit the interaction between TNF-α and TNFR1, and/or regulate related signaling pathways. In this study, we combined in silico methods with biophysical and cell-based assays to identify novel antagonists that bind to TNF-α or TNFR1. Pharmacophore model filtering and molecular docking were applied to identify potential TNF-α antagonists. In regard to TNFR1, we constructed a three-dimensional model of the TNF-α-TNFR1 complex and carried out molecular dynamics simulations to sample the conformations. The residues in TNF-α that have been reported to play important roles in the TNF-α-TNFR1 complex were removed to form a pocket for further virtual screening of TNFR1-binding ligands. We obtained 20 virtual hits and tested them using surface plasmon resonance-based assays, which resulted in one ligand that binds to TNFR1 and four ligands with different scaffolds that bind to TNF-α. T1 and R1, the two most active compounds with K values of 11 and 16 μM for TNF-α and TNFR1, respectively, showed activities similar to those of known antagonists. Further cell-based assays also demonstrated that T1 and R1 have similar activities compared to the known TNF-α antagonist C87. Our work has not only produced several TNF-α and TNFR1 antagonists with novel scaffolds for further structural optimization but also showcases the power of our in silico methods for TNF-α- and TNFR1-based drug discovery.
Abstract. Allosteric modulators of G protein-coupled receptors (GPCRs), which target at allosteric sites, have significant advantages against the corresponding orthosteric compounds including higher selectivity, improved chemical tractability or physicochemical properties, and reduced risk of receptor oversensitization. Bitopic ligands of GPCRs target both orthosteric and allosteric sites. Bitopic ligands can improve binding affinity, enhance subtype selectivity, stabilize receptors, and reduce side effects. Discovering allosteric modulators or bitopic ligands for GPCRs has become an emerging research area, in which the design of allosteric modulators is a key step in the detection of bitopic ligands. Radioligand binding and functional assays ([ 35 S]GTPγS and ERK1/2 phosphorylation) are used to test the effects for potential modulators or bitopic ligands. High-throughput screening (HTS) in combination with disulfide trapping and fragment-based screening are used to aid the discovery of the allosteric modulators or bitopic ligands of GPCRs. When used alone, these methods are costly and can often result in too many potential drug targets, including false positives. Alternatively, low-cost and efficient computational approaches are useful in drug discovery of novel allosteric modulators and bitopic ligands to help refine the number of targets and reduce the false-positive rates. This review summarizes the state-of-the-art computational methods for the discovery of modulators and bitopic ligands. The challenges and opportunities for future drug discovery are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.