Real-time and efficient monitoring of geological disasters has received extensive attention in the application of UAV surveying and mapping control technology. The application of traditional landslide monitoring methods lacks the accuracy of control algorithms, which has become a hot issue currently facing. Based on the landslide surface subsidence monitoring method, this article designs the UAV trajectory scheduling subsidence monitoring software, which can monitor the UAV’s flight status and navigation information, and draw the flight trajectory in real time. At the same time, the model solves the problem of storage and management of landslide inspection results by the landslide inspection management system, and realizes the functions of entering and querying landslide information, viewing inspection results, landslide safety judgment, generating reports, and autonomous control. The simulation results show that the global accuracy reaches 0.975, and the algorithm recognition degree reaches 99.8%, which promotes the reliability of the landslide monitoring data for the identification of the surveying and mapping trajectory, and provides a decision-making basis for landslide treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.