In recent years, physics-informed neural networks (PINNs) have attracted more and more attention for their ability to quickly obtain high-precision data-driven solutions with only a small amount of data. However, although this model has good results in some nonlinear problems, it still has some shortcomings. For example, the unbalanced back-propagation gradient calculation results in the intense oscillation of the gradient value during the model training, which is easy to lead to the instability of the prediction accuracy. Based on this, we propose a gradient-optimized physics-informed neural networks (GOPINNs) model in this paper, which proposes a new neural network structure and balances the interaction between different terms in the loss function during model training through gradient statistics, so as to make the new proposed network structure more robust to gradient fluctuations. In this paper, taking Camassa-Holm(CH) equation and DNLS equation as examples, GOPINNs is used to simulate the peakon solution of CH equation, the rational wave solution of DNLS equation and the rogue wave solution of DNLS equation. The numerical results show that the GOPINNs can effectively smooth the gradient of the loss function in the calculation process, and obtain a higher precision solution than the original PINNs. In conclusion, our work provides new insights for optimizing the learning performance of neural networks, and saves more than one third of the time in simulating the complex CH equation and the DNLS equation, and improves the prediction accuracy by nearly ten times.
The free boundary value problem of reaction-diffusion equation is studied. In the first chapter, the Logistic diffusion equation with free boundary and the main work of this paper are introduced. The second chapter is the preparation work, explaining the existence and uniqueness of the solution of the free boundary Logistic diffusion equation. In the third chapter, we prove that messages propagate or disappear in finite time by constructing the asymptotic properties of upper and lower solutions. In chapter 4, the criterion of diffusion disappearance is given, and the threshold of information propagation or disappearance in finite time is given according to the initial value. The results show that when the given value is larger than the threshold value, the information will propagate in the whole region. Otherwise the message will stop propagating for a limited time.
In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.