A back-propagation (BP) neural network has good self-learning, self-adapting and generalization ability, but it may easily get stuck in a local minimum, and has a poor rate of convergence. Therefore, a method to optimize a BP algorithm based on a genetic algorithm (GA) is proposed to speed the training of BP, and to overcome BP's disadvantage of being easily stuck in a local minimum. The UCI data set is used here for experimental analysis and the experimental result shows that, compared with the BP algorithm and a method that only uses GA to learn the connection weights, our method that combines GA and BP to train the neural network works better; is less easily stuck in a local minimum; the trained network has a better generalization ability; and it has a good stabilization performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.